1. Compute the following limit: $\lim _{x \rightarrow-4} \frac{x^{2}+7 x+12}{x^{2}-16}$
2. Compute the following limit: $\quad \lim _{x \rightarrow-3} \frac{x^{2}+4 x+3}{x^{2}+3 x}$
3. Compute the following limit: $\lim _{x \rightarrow-3} \frac{x^{2}+5 x+6}{x^{2}+7 x+12}$
4. Compute the following limit: $\lim _{x \rightarrow 2} \frac{x^{2}-6 x+8}{x^{2}-7 x+10}$
5. Compute the following limit: $\quad \lim _{x \rightarrow 4} \frac{x^{2}-6 x+8}{x^{2}-2 x-8}$
6. Compute the following limit: $\lim _{x \rightarrow-2} \frac{x^{2}+x-2}{x^{2}-3 x-10}$
7. Compute the following limit: $\lim _{x \rightarrow-5} \frac{x^{2}-25}{x^{2}+x-20}$
8. Compute the following limit: $\quad \lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+6 x+9}$
9. Compute the following limit: $\lim _{x \rightarrow 2} \frac{x^{2}+2 x-8}{x^{2}-4 x+4}$
10. Compute the following limit: $\lim _{x \rightarrow 1} \frac{x^{2}-2 x+1}{x^{2}-1}$

Solutions:

1. $\lim _{x \rightarrow-4} \frac{x^{2}+7 x+12}{x^{2}-16}$

Factorize:
$=\lim _{x \rightarrow-4} \frac{(x+4)(x+3)}{(x+4)(x-4)} \quad$ Simplify the common factor:
$=\lim _{x \rightarrow-4} \frac{x+3}{x-4} \triangleright$ Use substitution to compute the limit:
$=\frac{-4+3}{-4-4} \quad \rightarrow$ Simplify:
$=\frac{1}{8}$
2. $\lim _{x \rightarrow-3} \frac{x^{2}+4 x+3}{x^{2}+3 x}>$ Factorize:
$=\lim _{x \rightarrow-3} \frac{(x+3)(x+1)}{(x+3)(x)}>$ Simplify the common factor:
$=\lim _{x \rightarrow-3} \frac{x+1}{x} \triangleright$ Use substitution to compute the limit:
$=\frac{-3+1}{-3} \quad$ Simplify:
$=\frac{2}{3}$
3. $\lim _{x \rightarrow-3} \frac{x^{2}+5 x+6}{x^{2}+7 x+12}>$ Factorize:
$=\lim _{x \rightarrow-3} \frac{(x+3)(x+2)}{(x+3)(x+4)} \triangleright$ Simplify the common factor:
$=\lim _{x \rightarrow-3} \frac{x+2}{x+4}>$ Use substitution to compute the limit:
$=\frac{-3+2}{-3+4} \quad$ Simplify:
$=-1$
4. $\lim _{x \rightarrow 2} \frac{x^{2}-6 x+8}{x^{2}-7 x+10}>$ Factorize:
$=\lim _{x \rightarrow 2} \frac{(x-2)(x-4)}{(x-2)(x-5)} \quad$ Simplify the common factor:
$=\lim _{x \rightarrow 2} \frac{x-4}{x-5} \quad$ Use substitution to compute the limit:
$=\frac{2-4}{2-5} \quad$ Simplify:
$=\frac{2}{3}$
5. $\lim _{x \rightarrow 4} \frac{x^{2}-6 x+8}{x^{2}-2 x-8}>$ Factorize:
$=\lim _{x \rightarrow 4} \frac{(x-4)(x-2)}{(x-4)(x+2)} \quad$ Simplify the common factor:
$=\lim _{x \rightarrow 4} \frac{x-2}{x+2} \quad$ Use substitution to compute the limit:
$=\frac{4-2}{4+2} \quad$ Simplify:
$=\frac{1}{3}$
6. $\lim _{x \rightarrow-2} \frac{x^{2}+x-2}{x^{2}-3 x-10} \rightarrow$ Factorize:
$=\lim _{x \rightarrow-2} \frac{(x+2)(x-1)}{(x+2)(x-5)} \quad$ Simplify the common factor:
$=\lim _{x \rightarrow-2} \frac{x-1}{x-5}>$ Use substitution to compute the limit:
$=\frac{-2-1}{-2-5} \quad$ Simplify:
$=\frac{3}{7}$
7. $\lim _{x \rightarrow-5} \frac{x^{2}-25}{x^{2}+x-20}>$ Factorize:
$=\lim _{x \rightarrow-5} \frac{(x+5)(x-5)}{(x+5)(x-4)} \quad$ Simplify the common factor:
$=\lim _{x \rightarrow-5} \frac{x-5}{x-4} \downarrow$ Use substitution to compute the limit:
$=\frac{-5-5}{-5-4} \quad$ Simplify:
$=\frac{10}{9}$
8. $\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+6 x+9}>$ Factorize:
$=\lim _{x \rightarrow-3} \frac{(x+3)(x-3)}{(x+3)(x+3)} \triangleright$ Simplify the common factor:
$=\lim _{x \rightarrow-3} \frac{x-3}{x+3}>$ Use substitution to compute the limit:
$=\frac{-3-3}{-3+3} \quad$ Simplify:
$=D N E$
9. $\lim _{x \rightarrow 2} \frac{x^{2}+2 x-8}{x^{2}-4 x+4} \rightarrow$ Factorize:
$=\lim _{x \rightarrow 2} \frac{(x-2)(x+4)}{(x-2)(x-2)} \quad$ Simplify the common factor:
$=\lim _{x \rightarrow 2} \frac{x+4}{x-2} \bullet$ Use substitution to compute the limit:
$=\frac{2+4}{2-2} \quad$ Simplify:
$=D N E$
10. $\lim _{x \rightarrow 1} \frac{x^{2}-2 x+1}{x^{2}-1}>$ Factorize:
$=\lim _{x \rightarrow 1} \frac{(x-1)(x-1)}{(x-1)(x+1)} \quad$ Simplify the common factor:
$=\lim _{x \rightarrow 1} \frac{x-1}{x+1} \quad$ Use substitution to compute the limit:
$=\frac{1-1}{1+1} \quad$ Simplify:
$=0$

1. Compute the following limit: $\lim _{x \rightarrow 1} \frac{\sqrt{x}-1}{x-1}$
2. Compute the following limit: $\quad \lim _{x \rightarrow \frac{25}{9}} \frac{\sqrt{x}-\frac{5}{3}}{x-\frac{25}{9}}$
3. Compute the following limit: $\lim _{x \rightarrow \frac{25}{4}} \frac{\sqrt{x}-\frac{5}{2}}{x-\frac{25}{4}}$
4. Compute the following limit: $\lim _{x \rightarrow \frac{1}{16}} \frac{\sqrt{x}-\frac{1}{4}}{x-\frac{1}{16}}$
5. Compute the following limit: $\quad \lim _{x \rightarrow \frac{1}{9}} \frac{\sqrt{x}-\frac{1}{3}}{x-\frac{1}{9}}$
6. Compute the following limit: $\lim _{x \rightarrow \frac{4}{9}} \frac{\sqrt{x}-\frac{2}{3}}{x-\frac{4}{9}}$
7. Compute the following limit: $\lim _{x \rightarrow \frac{16}{9}} \frac{\sqrt{x}-\frac{4}{3}}{x-\frac{16}{9}}$
8. Compute the following limit: $\lim _{x \rightarrow 4} \frac{\sqrt{x}-2}{x-4}$
9. Compute the following limit: $\lim _{x \rightarrow \frac{9}{4}} \frac{\sqrt{x}-\frac{3}{2}}{x-\frac{9}{4}}$
10. Compute the following limit: $\lim _{x \rightarrow \frac{1}{4}} \frac{\sqrt{x}-\frac{1}{2}}{x-\frac{1}{4}}$

Solutions:

1. $\lim _{x \rightarrow 1} \frac{\sqrt{x}-1}{x-1}$ Multiply by the conjugate radical:
$=\lim _{x \rightarrow 1} \frac{\sqrt{x}-1}{x-1} \times \frac{\sqrt{x}+1}{\sqrt{x}+1} \quad$ Use: $(a-b)(a+b)=a^{2}-b^{2} \quad$ and $\quad(\sqrt{x})^{2}=x$
$=\lim _{x \rightarrow 1} \frac{x-1}{(x-1)(\sqrt{x}+1)} \quad$ Simplify the common factor:
$=\lim _{x \rightarrow 1} \frac{1}{\sqrt{x}+1} \triangleright$ Use substituion to compute the limit:
$=\frac{1}{\sqrt{1}+1} \quad$ Simplify:
$=\frac{1}{2}$
2. $\lim _{x \rightarrow \frac{25}{9}} \frac{\sqrt{x}-\frac{5}{3}}{x-\frac{25}{9}}>$ Multiply by the conjugate radical:
$=\lim _{x \rightarrow \frac{25}{9}} \frac{\sqrt{x}-\frac{5}{3}}{x-\frac{25}{9}} \times \frac{\sqrt{x}+\frac{5}{3}}{\sqrt{x}+\frac{5}{3}} \quad \rightarrow$ Use: $(a-b)(a+b)=a^{2}-b^{2} \quad$ and $\quad(\sqrt{x})^{2}=x$
$=\lim _{x \rightarrow \frac{25}{9}} \frac{x-\frac{25}{9}}{\left(x-\frac{25}{9}\right)\left(\sqrt{x}+\frac{5}{3}\right)} \quad$ Simplify the common factor:
$=\lim _{x \rightarrow \frac{25}{9}} \frac{1}{\sqrt{x}+\frac{5}{3}} \rightarrow$ Use substituion to compute the limit:
$=\frac{1}{\sqrt{\frac{25}{9}}+\frac{5}{3}} \quad$ Simplify:
$=\frac{3}{10}$
3. $\lim _{x \rightarrow \frac{25}{4}} \frac{\sqrt{x}-\frac{5}{2}}{x-\frac{25}{4}} \downarrow$ Multiply by the conjugate radical:
$=\lim _{x \rightarrow \frac{25}{4}} \frac{\sqrt{x}-\frac{5}{2}}{x-\frac{25}{4}} \times \frac{\sqrt{x}+\frac{5}{2}}{\sqrt{x}+\frac{5}{2}} \quad \rightarrow$ Use: $(a-b)(a+b)=a^{2}-b^{2} \quad$ and $\quad(\sqrt{x})^{2}=x$
$=\lim _{x \rightarrow \frac{25}{4}} \frac{x-\frac{25}{4}}{\left(x-\frac{25}{4}\right)\left(\sqrt{x}+\frac{5}{2}\right)} \quad$ Simplify the common factor:
$=\lim _{x \rightarrow \frac{25}{4}} \frac{1}{\sqrt{x}+\frac{5}{2}} \bullet$ Use substituion to compute the limit:
$=\frac{1}{\sqrt{\frac{25}{4}}+\frac{5}{2}}>$ Simplify:
$=\frac{1}{5}$
4. $\lim _{x \rightarrow \frac{1}{16}} \frac{\sqrt{x}-\frac{1}{4}}{x-\frac{1}{16}}$ Multiply by the conjugate radical:

$$
\begin{aligned}
& =\lim _{x \rightarrow \frac{1}{16}} \frac{\sqrt{x}-\frac{1}{4}}{x-\frac{1}{16}} \times \frac{\sqrt{x}+\frac{1}{4}}{\sqrt{x}+\frac{1}{4}} \quad \text { Use: }(a-b)(a+b)=a^{2}-b^{2} \quad \text { and } \quad(\sqrt{x})^{2}=x \\
& =\lim _{x \rightarrow \frac{1}{16}} \frac{x-\frac{1}{16}}{\left(x-\frac{1}{16}\right)\left(\sqrt{x}+\frac{1}{4}\right)} \quad \text { Simplify the common factor: } \\
& =\lim _{x \rightarrow \frac{1}{16}} \frac{1}{\sqrt{x}+\frac{1}{4}} \rightarrow \text { Use substituion to compute the limit: } \\
& =\frac{1}{\sqrt{\frac{1}{16}}+\frac{1}{4}}>\text { Simplify: } \\
& =2
\end{aligned}
$$

5. $\lim _{x \rightarrow \frac{1}{9}} \frac{\sqrt{x}-\frac{1}{3}}{x-\frac{1}{9}}$ - Multiply by the conjugate radical:

$$
=\lim _{x \rightarrow \frac{1}{9}} \frac{\sqrt{x}-\frac{1}{3}}{x-\frac{1}{9}} \times \frac{\sqrt{x}+\frac{1}{3}}{\sqrt{x}+\frac{1}{3}} \quad \text { Use: }(a-b)(a+b)=a^{2}-b^{2} \quad \text { and } \quad(\sqrt{x})^{2}=x
$$

$$
=\lim _{x \rightarrow \frac{1}{9}} \frac{x-\frac{1}{9}}{\left(x-\frac{1}{9}\right)\left(\sqrt{x}+\frac{1}{3}\right)} \quad>\text { Simplify the common factor: }
$$

$$
=\lim _{x \rightarrow \frac{1}{9}} \frac{1}{\sqrt{x}+\frac{1}{3}} \quad \text { Use substituion to compute the limit: }
$$

$$
=\frac{1}{\sqrt{\frac{1}{9}}+\frac{1}{3}} \quad>\text { Simplify: }
$$

$$
=\frac{3}{2}
$$

6. $\lim _{x \rightarrow \frac{4}{9}} \frac{\sqrt{x}-\frac{2}{3}}{x-\frac{4}{9}}$ - Multiply by the conjugate radical:
$=\lim _{x \rightarrow \frac{4}{9}} \frac{\sqrt{x}-\frac{2}{3}}{x-\frac{4}{9}} \times \frac{\sqrt{x}+\frac{2}{3}}{\sqrt{x}+\frac{2}{3}} \quad \rightarrow$ Use: $(a-b)(a+b)=a^{2}-b^{2} \quad$ and $\quad(\sqrt{x})^{2}=x$
$=\lim _{x \rightarrow \frac{4}{9}} \frac{x-\frac{4}{9}}{\left(x-\frac{4}{9}\right)\left(\sqrt{x}+\frac{2}{3}\right)} \quad$ Simplify the common factor:
$=\lim _{x \rightarrow \frac{4}{9}} \frac{1}{\sqrt{x}+\frac{2}{3}} \downarrow$ Use substituion to compute the limit:
$=\frac{1}{\sqrt{\frac{4}{9}}+\frac{2}{3}} \quad$ Simplify:
$=\frac{3}{4}$
7. $\lim _{x \rightarrow \frac{16}{9}} \frac{\sqrt{x}-\frac{4}{3}}{x-\frac{16}{9}} \quad$ Multiply by the conjugate radical:
$=\lim _{x \rightarrow \frac{16}{9}} \frac{\sqrt{x}-\frac{4}{3}}{x-\frac{16}{9}} \times \frac{\sqrt{x}+\frac{4}{3}}{\sqrt{x}+\frac{4}{3}} \quad$ Use: $(a-b)(a+b)=a^{2}-b^{2}$ and $\quad(\sqrt{x})^{2}=x$
$=\lim _{x \rightarrow \frac{16}{9}} \frac{x-\frac{16}{9}}{\left(x-\frac{16}{9}\right)\left(\sqrt{x}+\frac{4}{3}\right)} \quad$ Simplify the common factor:
$=\lim _{x \rightarrow \frac{16}{9}} \frac{1}{\sqrt{x}+\frac{4}{3}} \rightarrow$ Use substituion to compute the limit:
$=\frac{1}{\sqrt{\frac{16}{9}}+\frac{4}{3}} \quad \rightarrow$ Simplify:
$=\frac{3}{8}$
8. $\lim _{x \rightarrow 4} \frac{\sqrt{x}-2}{x-4}>$ Multiply by the conjugate radical:
$=\lim _{x \rightarrow 4} \frac{\sqrt{x}-2}{x-4} \times \frac{\sqrt{x}+2}{\sqrt{x}+2} \quad \rightarrow$ Use: $(a-b)(a+b)=a^{2}-b^{2} \quad$ and $\quad(\sqrt{x})^{2}=x$
$=\lim _{x \rightarrow 4} \frac{x-4}{(x-4)(\sqrt{x}+2)}>$ Simplify the common factor:
$=\lim _{x \rightarrow 4} \frac{1}{\sqrt{x}+2} \quad$ Use substituion to compute the limit:
$=\frac{1}{\sqrt{4}+2} \quad$ Simplify:
$=\frac{1}{4}$
9. $\lim _{x \rightarrow \frac{9}{4}} \frac{\sqrt{x}-\frac{3}{2}}{x-\frac{9}{4}}>$ Multiply by the conjugate radical:
$=\lim _{x \rightarrow \frac{9}{4}} \frac{\sqrt{x}-\frac{3}{2}}{x-\frac{9}{4}} \times \frac{\sqrt{x}+\frac{3}{2}}{\sqrt{x}+\frac{3}{2}} \quad \rightarrow$ Use: $(a-b)(a+b)=a^{2}-b^{2} \quad$ and $\quad(\sqrt{x})^{2}=x$
$=\lim _{x \rightarrow \frac{9}{4}} \frac{x-\frac{9}{4}}{\left(x-\frac{9}{4}\right)\left(\sqrt{x}+\frac{3}{2}\right)} \quad>$ Simplify the common factor:
$=\lim _{x \rightarrow \frac{9}{4}} \frac{1}{\sqrt{x}+\frac{3}{2}} \downarrow$ Use substituion to compute the limit:
$=\frac{1}{\sqrt{\frac{9}{4}}+\frac{3}{2}} \quad>$ Simplify:
$=\frac{1}{3}$
10. $\lim _{x \rightarrow \frac{1}{4}} \frac{\sqrt{x}-\frac{1}{2}}{x-\frac{1}{4}} \downarrow$ Multiply by the conjugate radical:
$=\lim _{x \rightarrow \frac{1}{4}} \frac{\sqrt{x}-\frac{1}{2}}{x-\frac{1}{4}} \times \frac{\sqrt{x}+\frac{1}{2}}{\sqrt{x}+\frac{1}{2}} \quad \rightarrow$ Use: $(a-b)(a+b)=a^{2}-b^{2} \quad$ and $\quad(\sqrt{x})^{2}=x$
$=\lim _{x \rightarrow \frac{1}{4}} \frac{x-\frac{1}{4}}{\left(x-\frac{1}{4}\right)\left(\sqrt{x}+\frac{1}{2}\right)} \quad>$ Simplify the common factor:
$=\lim _{x \rightarrow \frac{1}{4}} \frac{1}{\sqrt{x}+\frac{1}{2}} \quad$ Use substituion to compute the limit:

CALCULUS

$=\frac{1}{\sqrt{\frac{1}{4}}+\frac{1}{2}} \quad$ Simplify:
$=1$

1. Compute the following limit: $\lim _{x \rightarrow-1} \frac{x^{3}+1}{x^{2}-1}$
2. Compute the following limit: $\quad \lim _{x \rightarrow 2} \frac{x^{3}-8}{x^{2}-4}$
3. Compute the following limit: $\lim _{x \rightarrow 4} \frac{x^{3}-64}{x^{2}-16}$
4. Compute the following limit: $\lim _{x \rightarrow-4} \frac{x^{3}+64}{x^{2}-16}$
5. Compute the following limit: $\quad \lim _{x \rightarrow-3} \frac{x^{3}+27}{x^{2}-9}$
6. Compute the following limit: $\quad \lim _{x \rightarrow 1} \frac{x^{3}-1}{x^{2}-1}$
7. Compute the following limit: $\lim _{x \rightarrow-2} \frac{x^{3}+8}{x^{2}-4}$
8. Compute the following limit: $\lim _{x \rightarrow-5} \frac{x^{3}+125}{x^{2}-25}$
9. Compute the following limit: $\lim _{x \rightarrow 3} \frac{x^{3}-27}{x^{2}-9}$
10. Compute the following limit: $\lim _{x \rightarrow 5} \frac{x^{3}-125}{x^{2}-25}$

Solutions:

1. $\lim _{x \rightarrow-1} \frac{x^{3}+1}{x^{2}-1} \quad$ Use: $(a+b)^{3}=(a+b)\left(a^{2}-a b+b^{2}\right) \quad$ or $\quad(a-b)^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$

$$
\begin{aligned}
& =\lim _{x \rightarrow-1} \frac{(x+1)\left(x^{2}-x+1\right)}{(x+1)(x-1)} \quad \text { Simplify the common factor: } \\
& =\lim _{x \rightarrow-1} \frac{x^{2}-x+1}{x-1}>\text { Use substitution to compute the limit: } \\
& =\frac{1-1(-1)+1}{-1-1}>\text { Simplify: } \\
& =\frac{-3}{2}
\end{aligned}
$$

2. $\lim _{x \rightarrow 2} \frac{x^{3}-8}{x^{2}-4} \quad$ Use: $(a+b)^{3}=(a+b)\left(a^{2}-a b+b^{2}\right) \quad$ or $\quad(a-b)^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$
$=\lim _{x \rightarrow 2} \frac{(x-2)\left(x^{2}+2 x+4\right)}{(x-2)(x+2)}>$ Simplify the common factor:
$=\lim _{x \rightarrow 2} \frac{x^{2}+2 x+4}{x+2} \downarrow$ Use substitution to compute the limit:
$=\frac{4+2(2)+4}{2+2}>$ Simplify:
$=3$
3. $\lim _{x \rightarrow 4} \frac{x^{3}-64}{x^{2}-16} \quad$ Use: $(a+b)^{3}=(a+b)\left(a^{2}-a b+b^{2}\right) \quad$ or $\quad(a-b)^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$
$=\lim _{x \rightarrow 4} \frac{(x-4)\left(x^{2}+4 x+16\right)}{(x-4)(x+4)} \quad$ Simplify the common factor:
$=\lim _{x \rightarrow 4} \frac{x^{2}+4 x+16}{x+4} \triangleright$ Use substitution to compute the limit:
$=\frac{16+4(4)+16}{4+4}>$ Simplify:
$=6$
4. $\lim _{x \rightarrow-4} \frac{x^{3}+64}{x^{2}-16} \quad$ Use: $(a+b)^{3}=(a+b)\left(a^{2}-a b+b^{2}\right) \quad$ or
$=\lim _{x \rightarrow-4} \frac{(x+4)\left(x^{2}-4 x+16\right)}{(x+4)(x-4)} \quad$ Simplify the common factor:
$=\lim _{x \rightarrow-4} \frac{x^{2}-4 x+16}{x-4}>$ Use substitution to compute the limit:
$=\frac{16-4(-4)+16}{-4-4}>$ Simplify:
$=-6$
5. $\lim _{x \rightarrow-3} \frac{x^{3}+27}{x^{2}-9} \quad$ Use: $(a+b)^{3}=(a+b)\left(a^{2}-a b+b^{2}\right) \quad$ or $\quad(a-b)^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$
$=\lim _{x \rightarrow-3} \frac{(x+3)\left(x^{2}-3 x+9\right)}{(x+3)(x-3)} \quad$ Simplify the common factor:
$=\lim _{x \rightarrow-3} \frac{x^{2}-3 x+9}{x-3}>$ Use substitution to compute the limit:
$=\frac{9-3(-3)+9}{-3-3} \quad$ Simplify:
$=\frac{-9}{2}$
6. $\lim _{x \rightarrow 1} \frac{x^{3}-1}{x^{2}-1} \quad$ Use: $(a+b)^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)$
$=\lim _{x \rightarrow 1} \frac{(x-1)\left(x^{2}+x+1\right)}{(x-1)(x+1)} \quad$ Simplify the common factor:
$=\lim _{x \rightarrow 1} \frac{x^{2}+x+1}{x+1} \triangleright$ Use substitution to compute the limit:
$=\frac{1+1(1)+1}{1+1} \quad$ Simplify:
$=\frac{3}{2}$
7. $\lim _{x \rightarrow-2} \frac{x^{3}+8}{x^{2}-4} \rightarrow$ Use: $(a+b)^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)$
$=\lim _{x \rightarrow-2} \frac{(x+2)\left(x^{2}-2 x+4\right)}{(x+2)(x-2)} \quad$ Simplify the common factor:
$=\lim _{x \rightarrow-2} \frac{x^{2}-2 x+4}{x-2}>$ Use substitution to compute the limit:
$=\frac{4-2(-2)+4}{-2-2} \quad$ Simplify:
$=-3$
8. $\lim _{x \rightarrow-5} \frac{x^{3}+125}{x^{2}-25} \quad$ Use: $(a+b)^{3}=(a+b)\left(a^{2}-a b+b^{2}\right) \quad$ or $\quad(a-b)^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$
$=\lim _{x \rightarrow-5} \frac{(x+5)\left(x^{2}-5 x+25\right)}{(x+5)(x-5)} \quad$ Simplify the common factor:
$=\lim _{x \rightarrow-5} \frac{x^{2}-5 x+25}{x-5} \rightarrow$ Use substitution to compute the limit:
$=\frac{25-5(-5)+25}{-5-5} \rightarrow$ Simplify:
$=\frac{-15}{2}$
9. $\lim _{x \rightarrow 3} \frac{x^{3}-27}{x^{2}-9} \quad$ Use: $(a+b)^{3}=(a+b)\left(a^{2}-a b+b^{2}\right) \quad$ or $\quad(a-b)^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$
$=\lim _{x \rightarrow 3} \frac{(x-3)\left(x^{2}+3 x+9\right)}{(x-3)(x+3)} \quad$ Simplify the common factor:
$=\lim _{x \rightarrow 3} \frac{x^{2}+3 x+9}{x+3} \quad$ Use substitution to compute the limit:
$=\frac{9+3(3)+9}{3+3} \quad$ Simplify:
$=\frac{9}{2}$
10. $\lim _{x \rightarrow 5} \frac{x^{3}-125}{x^{2}-25} \quad$ Use: $(a+b)^{3}=(a+b)\left(a^{2}-a b+b^{2}\right) \quad$ or $\quad(a-b)^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$
$=\lim _{x \rightarrow 5} \frac{(x-5)\left(x^{2}+5 x+25\right)}{(x-5)(x+5)} \triangleright$ Simplify the common factor:
$=\lim _{x \rightarrow 5} \frac{x^{2}+5 x+25}{x+5}>$ Use substitution to compute the limit:
$=\frac{25+5(5)+25}{5+5}>$ Simplify:
$=\frac{15}{2}$
11. Compute the following limit: $\quad \lim _{x \rightarrow 4} \frac{\sqrt{x-1}-\sqrt{3}}{x-4}$
12. Compute the following limit: $\quad \lim _{x \rightarrow-2} \frac{\sqrt{x+9}-\sqrt{7}}{x+2}$
13. Compute the following limit: $\lim _{x \rightarrow-2} \frac{\sqrt{x+7}-\sqrt{5}}{x+2}$
14. Compute the following limit: $\quad \lim _{x \rightarrow 4} \frac{\sqrt{x-3}-\sqrt{1}}{x-4}$
15. Compute the following limit: $\quad \lim _{x \rightarrow-5} \frac{\sqrt{x+7}-\sqrt{2}}{x+5}$
16. Compute the following limit: $\quad \lim _{x \rightarrow 4} \frac{\sqrt{x+7}-\sqrt{11}}{x-4}$
17. Compute the following limit: $\lim _{x \rightarrow-3} \frac{\sqrt{x+13}-\sqrt{10}}{x+3}$
18. Compute the following limit: $\lim _{x \rightarrow-3} \frac{\sqrt{x+8}-\sqrt{5}}{x+3}$
19. Compute the following limit: $\quad \lim _{x \rightarrow 0} \frac{\sqrt{x+15}-\sqrt{15}}{x-0}$
20. Compute the following limit: $\lim _{x \rightarrow-1} \frac{\sqrt{x+9}-\sqrt{8}}{x+1}$

Solutions:

1. $\lim _{x \rightarrow 4} \frac{\sqrt{x-1}-\sqrt{3}}{x-4}>$ Multiply by the conjugate radical:
$=\lim _{x \rightarrow 4} \frac{\sqrt{x-1}-\sqrt{3}}{x-4} \times \frac{\sqrt{x-1}+\sqrt{3}}{\sqrt{x-1}+\sqrt{3}} \quad$ Use: $(a-b)(a+b)=a^{2}-b^{2} \quad$ and $\quad(\sqrt{a})^{2}=a$
$=\lim _{x \rightarrow 4} \frac{(x-1)-3}{(x-4)(\sqrt{x-1}+\sqrt{3)}} \quad$ Remove brackets and simplify:
$=\lim _{x \rightarrow 4} \frac{x-4}{(x-4)(\sqrt{x-1}+\sqrt{3)}}>$ Simplify the common factor:
$=\lim _{x \rightarrow 4} \frac{1}{\sqrt{x-1}+\sqrt{3}}>$ Use substitution to compute the limit:
$=\frac{1}{\sqrt{4-1}+\sqrt{3}} \quad$ Simplify:
$=\frac{1}{2 \sqrt{3}}$
2. $\lim _{x \rightarrow-2} \frac{\sqrt{x+9}-\sqrt{7}}{x+2}>$ Multiply by the conjugate radical:
$=\lim _{x \rightarrow-2} \frac{\sqrt{x+9}-\sqrt{7}}{x+2} \times \frac{\sqrt{x+9}+\sqrt{7}}{\sqrt{x+9}+\sqrt{7}} \quad \rightarrow$ Use: $(a-b)(a+b)=a^{2}-b^{2} \quad$ and $\quad(\sqrt{a})^{2}=a$
$=\lim _{x \rightarrow-2} \frac{(x+9)-7}{(x+2)(\sqrt{x+9}+\sqrt{7})} \triangleright$ Remove brackets and simplify:
$=\lim _{x \rightarrow-2} \frac{x+2}{(x+2)(\sqrt{x+9}+\sqrt{7})}>$ Simplify the common factor:
$=\lim _{x \rightarrow-2} \frac{1}{\sqrt{x+9}+\sqrt{7}}>$ Use substitution to compute the limit:
$=\frac{1}{\sqrt{-2+9}+\sqrt{7}} \quad \rightarrow$ Simplify:
$=\frac{1}{2 \sqrt{7}}$
3. $\lim _{x \rightarrow-2} \frac{\sqrt{x+7}-\sqrt{5}}{x+2}>$ Multiply by the conjugate radical:
$=\lim _{x \rightarrow-2} \frac{\sqrt{x+7}-\sqrt{5}}{x+2} \times \frac{\sqrt{x+7}+\sqrt{5}}{\sqrt{x+7}+\sqrt{5}} \quad \rightarrow$ Use: $(a-b)(a+b)=a^{2}-b^{2} \quad$ and $\quad(\sqrt{a})^{2}=a$
$=\lim _{x \rightarrow-2} \frac{(x+7)-5}{(x+2)(\sqrt{x+7}+\sqrt{5)}} \quad$ Remove brackets and simplify:
$=\lim _{x \rightarrow-2} \frac{x+2}{(x+2)(\sqrt{x+7}+\sqrt{5})} \quad$ Simplify the common factor:
$=\lim _{x \rightarrow-2} \frac{1}{\sqrt{x+7}+\sqrt{5}}>$ Use substitution to compute the limit:
$=\frac{1}{\sqrt{-2+7}+\sqrt{5}} \quad$ Simplify:
$=\frac{1}{2 \sqrt{5}}$
4. $\lim _{x \rightarrow 4} \frac{\sqrt{x-3}-\sqrt{1}}{x-4} \triangleright$ Multiply by the conjugate radical:
$=\lim _{x \rightarrow 4} \frac{\sqrt{x-3}-\sqrt{1}}{x-4} \times \frac{\sqrt{x-3}+\sqrt{1}}{\sqrt{x-3}+\sqrt{1}} \quad$ Use: $(a-b)(a+b)=a^{2}-b^{2} \quad$ and $\quad(\sqrt{a})^{2}=a$
$=\lim _{x \rightarrow 4} \frac{(x-3)-1}{(x-4)(\sqrt{x-3}+\sqrt{1)}}>$ Remove brackets and simplify:
$=\lim _{x \rightarrow 4} \frac{x-4}{(x-4)(\sqrt{x-3}+\sqrt{1)}} \quad$ Simplify the common factor:
$=\lim _{x \rightarrow 4} \frac{1}{\sqrt{x-3}+\sqrt{1}} \quad$ Use substitution to compute the limit:
$=\frac{1}{\sqrt{4-3}+\sqrt{1}} \quad$ Simplify:
$=\frac{1}{2 \sqrt{1}}$
5. $\lim _{x \rightarrow-5} \frac{\sqrt{x+7}-\sqrt{2}}{x+5}>$ Multiply by the conjugate radical:
$=\lim _{x \rightarrow-5} \frac{\sqrt{x+7}-\sqrt{2}}{x+5} \times \frac{\sqrt{x+7}+\sqrt{2}}{\sqrt{x+7}+\sqrt{2}} \rightarrow$ Use: $(a-b)(a+b)=a^{2}-b^{2} \quad$ and $\quad(\sqrt{a})^{2}=a$
$=\lim _{x \rightarrow-5} \frac{(x+7)-2}{(x+5)(\sqrt{x+7}+\sqrt{2})} \quad \triangleright$ Remove brackets and simplify:
$=\lim _{x \rightarrow-5} \frac{x+5}{(x+5)(\sqrt{x+7}+\sqrt{2)}}>$ Simplify the common factor:
$=\lim _{x \rightarrow-5} \frac{1}{\sqrt{x+7}+\sqrt{2}} \rightarrow$ Use substitution to compute the limit:
$=\frac{1}{\sqrt{-5+7}+\sqrt{2}} \quad$ Simplify:
$=\frac{1}{2 \sqrt{2}}$
6. $\lim _{x \rightarrow 4} \frac{\sqrt{x+7}-\sqrt{11}}{x-4}>$ Multiply by the conjugate radical:
$=\lim _{x \rightarrow 4} \frac{\sqrt{x+7}-\sqrt{11}}{x-4} \times \frac{\sqrt{x+7}+\sqrt{11}}{\sqrt{x+7}+\sqrt{11}} \quad$ Use: $(a-b)(a+b)=a^{2}-b^{2} \quad$ and $\quad(\sqrt{a})^{2}=a$
$=\lim _{x \rightarrow 4} \frac{(x+7)-11}{(x-4)(\sqrt{x+7}+\sqrt{11})} \quad$ Remove brackets and simplify:
$=\lim _{x \rightarrow 4} \frac{x-4}{(x-4)(\sqrt{x+7}+\sqrt{11})} \quad$ Simplify the common factor:
$=\lim _{x \rightarrow 4} \frac{1}{\sqrt{x+7}+\sqrt{11}}>$ Use substitution to compute the limit:
$=\frac{1}{\sqrt{4+7}+\sqrt{11}} \quad>$ Simplify:

$$
=\frac{1}{2 \sqrt{11}}
$$

7. $\lim _{x \rightarrow-3} \frac{\sqrt{x+13}-\sqrt{10}}{x+3}$ Multiply by the conjugate radical:

$$
=\lim _{x \rightarrow-3} \frac{\sqrt{x+13}-\sqrt{10}}{x+3} \times \frac{\sqrt{x+13}+\sqrt{10}}{\sqrt{x+13}+\sqrt{10}} \quad \rightarrow \text { Use: }(a-b)(a+b)=a^{2}-b^{2} \quad \text { and } \quad(\sqrt{a})^{2}=a
$$

$$
=\lim _{x \rightarrow-3} \frac{(x+13)-10}{(x+3)(\sqrt{x+13}+\sqrt{10})} \quad \triangleright \text { Remove brackets and simplify: }
$$

$$
=\lim _{x \rightarrow-3} \frac{x+3}{(x+3)(\sqrt{x+13}+\sqrt{10})} \quad \text { Simplify the common factor: }
$$

$$
=\lim _{x \rightarrow-3} \frac{1}{\sqrt{x+13}+\sqrt{10}}>\text { Use substitution to compute the limit: }
$$

$$
=\frac{1}{\sqrt{-3+13}+\sqrt{10}} \quad>\text { Simplify: }
$$

$$
=\frac{1}{2 \sqrt{10}}
$$

8. $\lim _{x \rightarrow-3} \frac{\sqrt{x+8}-\sqrt{5}}{x+3}$ Multiply by the conjugate radical:
$=\lim _{x \rightarrow-3} \frac{\sqrt{x+8}-\sqrt{5}}{x+3} \times \frac{\sqrt{x+8}+\sqrt{5}}{\sqrt{x+8}+\sqrt{5}} \quad \rightarrow$ Use: $(a-b)(a+b)=a^{2}-b^{2} \quad$ and $\quad(\sqrt{a})^{2}=a$
$=\lim _{x \rightarrow-3} \frac{(x+8)-5}{(x+3)(\sqrt{x+8}+\sqrt{5})} \quad$ Remove brackets and simplify:
$=\lim _{x \rightarrow-3} \frac{x+3}{(x+3)(\sqrt{x+8}+\sqrt{5)}}>$ Simplify the common factor:
$=\lim _{x \rightarrow-3} \frac{1}{\sqrt{x+8}+\sqrt{5}}>$ Use substitution to compute the limit:
$=\frac{1}{\sqrt{-3+8}+\sqrt{5}} \quad$ Simplify:
$=\frac{1}{2 \sqrt{5}}$
9. $\lim _{x \rightarrow 0} \frac{\sqrt{x+15}-\sqrt{15}}{x-0} \triangleright$ Multiply by the conjugate radical:
$=\lim _{x \rightarrow 0} \frac{\sqrt{x+15}-\sqrt{15}}{x-0} \times \frac{\sqrt{x+15}+\sqrt{15}}{\sqrt{x+15}+\sqrt{15}} \quad$ Use: $(a-b)(a+b)=a^{2}-b^{2} \quad$ and $\quad(\sqrt{a})^{2}=a$
$=\lim _{x \rightarrow 0} \frac{(x+15)-15}{(x-0)(\sqrt{x+15}+\sqrt{15)}}>$ Remove brackets and simplify:
$=\lim _{x \rightarrow 0} \frac{x-0}{(x-0)(\sqrt{x+15}+\sqrt{15})} \quad$ Simplify the common factor:
$=\lim _{x \rightarrow 0} \frac{1}{\sqrt{x+15}+\sqrt{15}}>$ Use substitution to compute the limit:
$=\frac{1}{\sqrt{0+15}+\sqrt{15}} \quad>$ Simplify:
$=\frac{1}{2 \sqrt{15}}$
10. $\lim _{x \rightarrow-1} \frac{\sqrt{x+9}-\sqrt{8}}{x+1}>$ Multiply by the conjugate radical:
$=\lim _{x \rightarrow-1} \frac{\sqrt{x+9}-\sqrt{8}}{x+1} \times \frac{\sqrt{x+9}+\sqrt{8}}{\sqrt{x+9}+\sqrt{8}} \quad \rightarrow$ Use: $(a-b)(a+b)=a^{2}-b^{2} \quad$ and $\quad(\sqrt{a})^{2}=a$
$=\lim _{x \rightarrow-1} \frac{(x+9)-8}{(x+1)(\sqrt{x+9}+\sqrt{8)}} \quad$ Remove brackets and simplify:
$=\lim _{x \rightarrow-1} \frac{x+1}{(x+1)(\sqrt{x+9}+\sqrt{8)}} \quad$ Simplify the common factor:
$=\lim _{x \rightarrow-1} \frac{1}{\sqrt{x+9}+\sqrt{8}}>$ Use substitution to compute the limit:
$=\frac{1}{\sqrt{-1+9}+\sqrt{8}} \quad$ Simplify:
$=\frac{1}{2 \sqrt{8}}$
11. Consider the following piece-wise defined function:

$$
f(x)=\left\{\begin{aligned}
\sqrt{3 x-2} & \text { if } x \leqslant 1 \\
x^{2}+1 & \text { if } x>1
\end{aligned}\right.
$$

Analize the continuity of this function at $x=1$.
2. Consider the following piece-wise defined function:

$$
f(x)=\left\{\begin{aligned}
\frac{3}{x+2}-1 & \text { if } x<1 \\
1 & \text { if } x=1 \\
\sqrt{x} & \text { if } x>1
\end{aligned}\right.
$$

Analize the continuity of this function at $x=1$.
3. Consider the following piece-wise defined function:

$$
f(x)=\left\{\begin{aligned}
\sqrt{-2 x^{2}+3 x+8} & \text { if } x \leqslant 1 \\
\frac{-9 x}{x+2}+6 & \text { if } x>1
\end{aligned}\right.
$$

Analize the continuity of this function at $x=1$.
4. Consider the following piece-wise defined function:

$$
f(x)=\left\{\begin{aligned}
\frac{-18 x}{x+3}+10 & \text { if } x \leqslant 3 \\
\frac{x}{x-2}-1 & \text { if } x>3
\end{aligned}\right.
$$

Analize the continuity of this function at $x=3$.
5. Consider the following piece-wise defined function:

$$
f(x)=\left\{\begin{aligned}
\sqrt{x^{2}-2 x-15} & \text { if } x<-3 \\
0 & \text { if } x=-3 \\
x^{2}-10 & \text { if } x>-3
\end{aligned}\right.
$$

Analize the continuity of this function at $x=-3$.
6. Consider the following piece-wise defined function:

$$
f(x)=\left\{\begin{aligned}
\frac{-6 x}{x}+7 & \text { if } x<2 \\
2 & \text { if } x=2 \\
-3 x+8 & \text { if } x>2
\end{aligned}\right.
$$

Analize the continuity of this function at $x=2$.
7. Consider the following piece-wise defined function:

$$
f(x)=\left\{\begin{aligned}
x^{2}-x-8 & \text { if } x<-2 \\
-2 x^{2}-x+4 & \text { if } x \geqslant-2
\end{aligned}\right.
$$

Analize the continuity of this function at $x=-2$.
8. Consider the following piece-wise defined function:

$$
f(x)=\left\{\begin{aligned}
2 x & \text { if } x<1 \\
\sqrt{x^{2}+3} & \text { if } x \geqslant 1
\end{aligned}\right.
$$

Analize the continuity of this function at $x=1$.
9. Consider the following piece-wise defined function:

$$
f(x)=\left\{\begin{aligned}
-2 x^{2}+2 x+13 & \text { if } x \leqslant 3 \\
\sqrt{2 x^{2}-3 x-9} & \text { if } x>3
\end{aligned}\right.
$$

Analize the continuity of this function at $x=3$.
10. Consider the following piece-wise defined function:

$$
f(x)=\left\{\begin{aligned}
\frac{6}{x-3}+3 & \text { if } x \leqslant 1 \\
-3 x^{2}-2 x+4 & \text { if } x>1
\end{aligned}\right.
$$

Analize the continuity of this function at $x=1$.

Solutions:
1.
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} \sqrt{3 x-2}=\sqrt{3(1)-2}=1$
$\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} x^{2}+1=(1)^{2}+1=2$
$f(1)=1$
So $\lim _{x \rightarrow 1^{-}} f(x) \neq \lim _{x \rightarrow 1^{+}} f(x) \quad \lim _{x \rightarrow 1^{-}} f(x)=f(1) \quad \lim _{x \rightarrow 1^{+}} f(x) \neq f(1)$
Therefore, the function is discontinuous.
2.
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} \frac{3}{x+2}-1=\frac{3}{(1)+2}-1=0$
$\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} \sqrt{x}=\sqrt{(1)}=1$
$f(1)=1$
So $\lim _{x \rightarrow 1^{-}} f(x) \neq \lim _{x \rightarrow 1^{+}} f(x) \quad \lim _{x \rightarrow 1^{-}} f(x) \neq f(1) \quad \lim _{x \rightarrow 1^{+}} f(x)=f(1)$
Therefore, the function is discontinuous.
3.
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} \sqrt{-2 x^{2}+3 x+8}=\sqrt{-2(1)^{2}+3(1)+8}=3$
$\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} \frac{-9 x}{x+2}+6=\frac{-9(1)}{(1)+2}+6=3$
$f(1)=3$
So $\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x) \quad \lim _{x \rightarrow 1^{-}} f(x)=f(1) \quad \lim _{x \rightarrow 1^{+}} f(x)=f(1)$
Therefore, the function is continuous.
4.
$\lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{-}} \frac{-18 x}{x+3}+10=\frac{-18(3)}{(3)+3}+10=1$
$\lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3^{+}} \frac{x}{x-2}-1=\frac{(3)}{(3)-2}-1=2$
$f(3)=1$
So $\lim _{x \rightarrow 3^{-}} f(x) \neq \lim _{x \rightarrow 3^{+}} f(x) \quad \lim _{x \rightarrow 3^{-}} f(x)=f(3) \quad \lim _{x \rightarrow 3^{+}} f(x) \neq f(3)$
Therefore, the function is discontinuous.
5.
$\lim _{x \rightarrow-3^{-}} f(x)=\lim _{x \rightarrow-3^{-}} \sqrt{x^{2}-2 x-15}=\sqrt{(-3)^{2}-2(-3)-15}=0$
$\lim _{x \rightarrow-3^{+}} f(x)=\lim _{x \rightarrow-3^{+}} x^{2}-10=(-3)^{2}-10=-1$
$f(-3)=0$
So $\lim _{x \rightarrow-3^{-}} f(x) \neq \lim _{x \rightarrow-3^{+}} f(x) \quad \lim _{x \rightarrow-3^{-}} f(x)=f(-3) \quad \lim _{x \rightarrow-3^{+}} f(x) \neq f(-3)$
Therefore, the function is discontinuous.
6.
$\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}} \frac{-6 x}{x}+7=\frac{-6(2)}{(2)}+7=1$
$\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}}-3 x+8=-3(2)+8=2$
$f(2)=2$
So $\lim _{x \rightarrow 2^{-}} f(x) \neq \lim _{x \rightarrow 2^{+}} f(x) \quad \lim _{x \rightarrow 2^{-}} f(x) \neq f(2) \quad \lim _{x \rightarrow 2^{+}} f(x)=f(2)$
Therefore, the function is discontinuous.
7.
$\lim _{x \rightarrow-2^{-}} f(x)=\lim _{x \rightarrow-2^{-}} x^{2}-x-8=(-2)^{2}-(-2)-8=-2$
$\lim _{x \rightarrow-2^{+}} f(x)=\lim _{x \rightarrow-2^{+}}-2 x^{2}-x+4=-2(-2)^{2}-(-2)+4=-2$
$f(-2)=-2$
So $\lim _{x \rightarrow-2^{-}} f(x)=\lim _{x \rightarrow-2^{+}} f(x) \quad \lim _{x \rightarrow-2^{-}} f(x)=f(-2) \quad \lim _{x \rightarrow-2^{+}} f(x)=f(-2)$
Therefore, the function is continuous.
8.
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} 2 x=2(1)=2$
$\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} \sqrt{x^{2}+3}=\sqrt{(1)^{2}+3}=2$
$f(1)=2$
So $\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x) \quad \lim _{x \rightarrow 1^{-}} f(x)=f(1) \quad \lim _{x \rightarrow 1^{+}} f(x)=f(1)$
Therefore, the function is continuous.
9.
$\lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{-}}-2 x^{2}+2 x+13=-2(3)^{2}+2(3)+13=1$
$\lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3^{+}} \sqrt{2 x^{2}-3 x-9}=\sqrt{2(3)^{2}-3(3)-9}=0$
$f(3)=1$
So $\lim _{x \rightarrow 3^{-}} f(x) \neq \lim _{x \rightarrow 3^{+}} f(x) \quad \lim _{x \rightarrow 3^{-}} f(x)=f(3) \quad \lim _{x \rightarrow 3^{+}} f(x) \neq f(3)$
Therefore, the function is discontinuous.
10.
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} \frac{6}{x-3}+3=\frac{6}{(1)-3}+3=0$
$\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}-3 x^{2}-2 x+4=-3(1)^{2}-2(1)+4=-1$
$f(1)=0$
So $\lim _{x \rightarrow 1^{-}} f(x) \neq \lim _{x \rightarrow 1^{+}} f(x) \quad \lim _{x \rightarrow 1^{-}} f(x)=f(1) \quad \lim _{x \rightarrow 1^{+}} f(x) \neq f(1)$
Therefore, the function is discontinuous.

1. Consider the following function defined by its graph:

Analyze the discontinuity of this function (continuous or discontinuous) and the type of discontinuity (removable, jump or infinite discontinuity) at the following numbers:
a) $x=-3$
b) $x=-1$
c) $x=3$
2. Consider the following function defined by its graph:

Analyze the discontinuity of this function (continuous or discontinuous) and the type of discontinuity (removable, jump or infinite discontinuity) at the following numbers:
a) $x=-3$
b) $x=0$
c) $x=3$
3. Consider the following function defined by its graph:

Analyze the discontinuity of this function (continuous or discontinuous) and the type of discontinuity (removable, jump or infinite discontinuity) at the following numbers:
a) $x=-3$
b) $x=0$
c) $x=4$
4. Consider the following function defined by its graph:

Analyze the discontinuity of this function (continuous or discontinuous) and the type of discontinuity (removable, jump or infinite discontinuity) at the following numbers:
a) $x=-5$
b) $x=-2$
c) $x=3$
5. Consider the following function defined by its graph:

Analyze the discontinuity of this function (continuous or discontinuous) and the type of discontinuity (removable, jump or infinite discontinuity) at the following numbers:
a) $x=-5$
b) $x=2$
c) $x=3$
6. Consider the following function defined by its graph:

Analyze the discontinuity of this function (continuous or discontinuous) and the type of discontinuity (removable, jump or infinite discontinuity) at the following numbers:
a) $x=-3$
b) $x=-2$
c) $x=3$
7. Consider the following function defined by its graph:

Analyze the discontinuity of this function (continuous or discontinuous) and the type of discontinuity (removable, jump or infinite discontinuity) at the following numbers:
a) $x=-3$
b) $x=-2$
c) $x=3$
8. Consider the following function defined by its graph:

Analyze the discontinuity of this function (continuous or discontinuous) and the type of discontinuity (removable, jump or infinite discontinuity) at the following numbers:
a) $x=-5$
b) $x=2$
c) $x=3$
9. Consider the following function defined by its graph:

Analyze the discontinuity of this function (continuous or discontinuous) and the type of discontinuity (removable, jump or infinite discontinuity) at the following numbers:
a) $x=-5$
b) $x=2$
c) $x=3$
10. Consider the following function defined by its graph:

Analyze the discontinuity of this function (continuous or discontinuous) and the type of discontinuity (removable, jump or infinite discontinuity) at the following numbers:
a) $x=-3$
b) $x=0$
c) $x=3$
(אұ!̣иụquoos!̣p әт!!uyu!̣) snonu!̣quoss!p

(Кұ!̣и!̣ұиoos!̣р әұ!!uyu!) snonu!̣иoos!̣p (ว (Кұ!!

 (Кұ!̣пи!̣иооs!̣р әұ!!ичи!)

Solutions:

1.

a) $\quad \lim _{x \rightarrow-3^{-}} f(x)=2 \quad \lim _{x \rightarrow-3^{+}} f(x)=2 \quad f(-3)=2$

Therefore the function is continuous.
b) $\quad \lim _{x \rightarrow-1^{-}} f(x)=\infty \quad \lim _{x \rightarrow-1^{+}} f(x)=\infty \quad f(-1)=3$

Therefore the function is discontinuous. There is an infinite discontinuity.
c) $\lim _{x \rightarrow 3^{-}} f(x)=-3 \quad \lim _{x \rightarrow 3^{+}} f(x)=-\infty \quad f(3)=D N E$

Therefore the function is discontinuous. There is an infinite discontinuity.
2.
a) $\lim _{x \rightarrow-3^{-}} f(x)=-2 \quad \lim _{x \rightarrow-3^{+}} f(x)=-2 \quad f(-3)=-2$

Therefore the function is continuous.
b) $\quad \lim _{x \rightarrow 0^{-}} f(x)=-3 \quad \lim _{x \rightarrow 0^{+}} f(x)=-2 \quad f(0)=-2 \quad \lim _{x \rightarrow 0^{-}} f(x) \neq \lim _{x \rightarrow 0^{+}} f(x)$

Therefore the function is discontinuous. There is a jump discontinuity.
c) $\lim _{x \rightarrow 3^{-}} f(x)=3 \quad \lim _{x \rightarrow 3^{+}} f(x)=3 \quad f(3)=3$

Therefore the function is continuous.
3.
a) $\quad \lim _{x \rightarrow-3^{-}} f(x)=0 \quad \lim _{x \rightarrow-3^{+}} f(x)=0 \quad f(-3)=0$

Therefore the function is continuous.
b) $\quad \lim _{x \rightarrow 0^{-}} f(x)=-\infty \quad \lim _{x \rightarrow 0^{+}} f(x)=-3 \quad f(0)=-3$

Therefore the function is discontinuous. There is an infinite discontinuity.
c) $\lim _{x \rightarrow 4^{-}} f(x)=1 \quad \lim _{x \rightarrow 4^{+}} f(x)=1 \quad f(4)=0 \quad \lim _{x \rightarrow 4^{-}} f(x) \neq f(4) \quad \lim _{x \rightarrow 4^{+}} f(x) \neq f(4)$

Therefore the function is discontinuous. There is a removable discontinuity.
4.
a) $\lim _{x \rightarrow-5^{-}} f(x)=-1 \quad \lim _{x \rightarrow-5^{+}} f(x)=-1 \quad f(-5)=0 \quad \lim _{x \rightarrow-5^{-}} f(x) \neq f(-5) \quad \lim _{x \rightarrow-5^{+}} f(x) \neq$ $f(-5)$
Therefore the function is discontinuous. There is a removable discontinuity.
b) $\lim _{x \rightarrow-2^{-}} f(x)=2 \quad \lim _{x \rightarrow-2^{+}} f(x)=2 \quad f(-2)=3 \quad \lim _{x \rightarrow-2^{-}} f(x) \neq f(-2) \quad \lim _{x \rightarrow-2^{+}} f(x) \neq f(-2)$

Therefore the function is discontinuous. There is a removable discontinuity.
c) $\lim _{x \rightarrow 3^{-}} f(x)=1 \quad \lim _{x \rightarrow 3^{+}} f(x)=1 \quad f(3)=1$

Therefore the function is continuous.
5.
a) $\lim _{x \rightarrow-5^{-}} f(x)=1 \quad \lim _{x \rightarrow-5^{+}} f(x)=1 \quad f(-5)=1$

Therefore the function is continuous.
b) $\quad \lim _{x \rightarrow 2^{-}} f(x)=-2 \quad \lim _{x \rightarrow 2^{+}} f(x)=-3 \quad f(2)=-3 \quad \lim _{x \rightarrow 2^{-}} f(x) \neq \lim _{x \rightarrow 2^{+}} f(x)$

Therefore the function is discontinuous. There is a jump discontinuity.
c) $\lim _{x \rightarrow 3^{-}} f(x)=2 \quad \lim _{x \rightarrow 3^{+}} f(x)=2 \quad f(3)=1 \quad \lim _{x \rightarrow 3^{-}} f(x) \neq f(3) \quad \lim _{x \rightarrow 3^{+}} f(x) \neq f(3)$

Therefore the function is discontinuous. There is a removable discontinuity.
6.
a) $\quad \lim _{x \rightarrow-3^{-}} f(x)=1 \quad \lim _{x \rightarrow-3^{+}} f(x)=0 \quad f(-3)=0 \quad \lim _{x \rightarrow-3^{-}} f(x) \neq \lim _{x \rightarrow-3^{+}} f(x)$

Therefore the function is discontinuous. There is a jump discontinuity.
b) $\quad \lim _{x \rightarrow-2^{-}} f(x)=\infty \quad \lim _{x \rightarrow-2^{+}} f(x)=\infty \quad f(-2)=D N E$

Therefore the function is discontinuous. There is an infinite discontinuity.
c) $\quad \lim _{x \rightarrow 3^{-}} f(x)=\infty \quad \lim _{x \rightarrow 3^{+}} f(x)=3 \quad f(3)=D N E$

Therefore the function is discontinuous. There is an infinite discontinuity.
7.
a) $\lim _{x \rightarrow-3^{-}} f(x)=-3 \quad \lim _{x \rightarrow-3^{+}} f(x)=-2 \quad f(-3)=-2 \quad \lim _{x \rightarrow-3^{-}} f(x) \neq \lim _{x \rightarrow-3^{+}} f(x)$

Therefore the function is discontinuous. There is a jump discontinuity.
b) $\lim _{x \rightarrow-2^{-}} f(x)=1 \quad \lim _{x \rightarrow-2^{+}} f(x)=0 \quad f(-2)=1 \quad \lim _{x \rightarrow-2^{-}} f(x) \neq \lim _{x \rightarrow-2^{+}} f(x)$

Therefore the function is discontinuous. There is a jump discontinuity.
c) $\lim _{x \rightarrow 3^{-}} f(x)=3 \quad \lim _{x \rightarrow 3^{+}} f(x)=3 \quad f(3)=3$

Therefore the function is continuous.
8.
a) $\lim _{x \rightarrow-5^{-}} f(x)=-1 \quad \lim _{x \rightarrow-5^{+}} f(x)=-2 \quad f(-5)=-1 \quad \lim _{x \rightarrow-5^{-}} f(x) \neq \lim _{x \rightarrow-5^{+}} f(x)$

Therefore the function is discontinuous. There is a jump discontinuity.
b) $\quad \lim _{x \rightarrow 2^{-}} f(x)=-\infty \quad \lim _{x \rightarrow 2^{+}} f(x)=-3 \quad f(2)=D N E$

Therefore the function is discontinuous. There is an infinite discontinuity.
c) $\lim _{x \rightarrow 3^{-}} f(x)=3 \quad \lim _{x \rightarrow 3^{+}} f(x)=\infty \quad f(3)=3$

Therefore the function is discontinuous. There is an infinite discontinuity.
9.
a) $\lim _{x \rightarrow-5^{-}} f(x)=3 \quad \lim _{x \rightarrow-5^{+}} f(x)=\infty \quad f(-5)=D N E$

Therefore the function is discontinuous. There is an infinite discontinuity.
b) $\quad \lim _{x \rightarrow 2^{-}} f(x)=0 \quad \lim _{x \rightarrow 2^{+}} f(x)=0 \quad f(2)=1 \quad \lim _{x \rightarrow 2^{-}} f(x) \neq f(2) \quad \lim _{x \rightarrow 2^{+}} f(x) \neq f(2)$

Therefore the function is discontinuous. There is a removable discontinuity.
c) $\lim _{x \rightarrow 3^{-}} f(x)=-2 \quad \lim _{x \rightarrow 3^{+}} f(x)=-2 \quad f(3)=-2$

Therefore the function is continuous.
10.
a) $\lim _{x \rightarrow-3^{-}} f(x)=-\infty \quad \lim _{x \rightarrow-3^{+}} f(x)=-3 \quad f(-3)=D N E$

Therefore the function is discontinuous. There is an infinite discontinuity.
b) $\quad \lim _{x \rightarrow 0^{-}} f(x)=0 \quad \lim _{x \rightarrow 0^{+}} f(x)=-1 \quad f(0)=0 \quad \lim _{x \rightarrow 0^{-}} f(x) \neq \lim _{x \rightarrow 0^{+}} f(x)$

Therefore the function is discontinuous. There is a jump discontinuity.
c) $\lim _{x \rightarrow 3^{-}} f(x)=-3 \quad \lim _{x \rightarrow 3^{+}} f(x)=-\infty \quad f(3)=D N E$

Therefore the function is discontinuous. There is an infinite discontinuity.

