Digital Logic and Number Systems Review Sheet

- 1. For each of the following components, draw their schematic symbol, describe their function, and use the internet to find a common practical use for them in an electronic circuit.
 - a. Resistor
 - b. LED
 - c. Diode
 - d. Capacitor
 - e. Transistor
 - f. Battery / Voltage Source
- 2. Draw a small diagram of a breadboard and describe how the rows and columns are connected underneath. How does this facilitate building circuits? What is a benefit of building circuits using a breadboard over other methods like using a circuit board, or simple soldering the correct connections to each component?

R1

- 3. Draw in the components and connecting wires on the diagram to show how this simple LED circuit could be wired on a breadboard.
- 4. List the 6 basic logic gates that we studied, and for each:
 - a. Give the fundamental boolean equation/operation
 - b. Draw the schematic symbol
 - c. Complete a truth table describing the gate's function
- 5. Create three of your own questions that require the use of ohm's law to solve. Solve each of them, showing your work.
- 6. For each of the following sets of resistor colour bands, give the rated resistance of a resistor coloured with that pattern.
 - a. Red, Red, Red
 - b. Yellow, Purple, Brown
 - c. Orange, Orange, Black
 - d. Brown, Black, Green
- 7. For the logic gate circuits shown here:

a. Complete a truth table for the circuit

- b. Give the equivalent boolean equation
- 8. For the logic gate circuit shown here, which is an example of a half adder circuit:

- a. Draw a diagram showing how the circuit could be wired on a breadboard using one AND gate IC and one XOR gate IC.
- b. Give a complete truth table describing what outputs would appear given every possible combination of inputs
- c. Identify which output is the sum output and which is the carry output.
- 9. Convert each of these UNSIGNED binary numbers to its equivalent decimal number.
 - a. 00000010
 - b. 00000101
 - c. 00010001
 - d. 00010101
 - e. 00011011
 - f. 00001110
 - g. 00001011
 - h. 00000110
 - i. 00011111
 - j. 00100110
- 10. Convert each decimal number to binary.
 - a. 35
 - b. 15
 - c. 19
 - d. 31
 - e. 34
 - f. 96
 - g. 110
 - h. 238
 - i. 78
 - j. 149
- 11. Convert each of the following hexadecimal numbers to decimal.
 - a. 345
 - b. AF56
 - c. 78C1
 - d. B0D5

- 12. Convert each of the following decimal numbers to hex.
 - a. 345
 - b. 32768
 - c. 255
 - d. 1289
- 13. Convert each UNSIGNED binary number to hex.
 - a. 01101111
 - b. 10111010
 - c. 011001101110
 - d. 100101010111
- 14. Convert each hex number to binary.
 - a. C9
 - b. 1F
 - c. A9
 - d. 76
- 15. Complete each of the binary addition practice problems on this sheet.
- 16. Complete each of the binary subtraction problems on <u>this sheet</u> by first converting the bottom number to a negative number using the two's complement representation, then performing the equivalent addition problem.