\S 3.1: Properties of Quadratic Functions

The graphs of quadratic functions have no ______ restrictions. Quadratic functions can be

represented by _____, by _____, or by _____.

Quadratic Functions can be expressed in three different algebraic Forms:

Factored Form Vertex Form	Standard Form
---------------------------	---------------

b)

How can we determine whether a function is quadratic?

Example 1: Linear or Quadratic?

x	у	FD	\mathbf{SD}
-2	7		
-1	4		
0	3		
1	4		
2	7		

In Class Assignment: p. 145 #1bc, 2, 3; Homework: p. 146 #4, 5, 7, 8

\S 3.2: Determining Maximum and Minimum Values of Quadratic Functions

The maximum or minimum value of a quadratic function is the	of the vertex.			
If a >0 in standard form, factored form, or vertex form, then the parabola opens _				
The quadratic has a value.				
If a <0 in standard form, factored form, or vertex form, then the parabola opens _				
The quadratic has a value.				
The vertex can be found from the standard form $f(x) = ax^2 + bx + c$ algebraically:				
• by to put the quadratic in v	ertex form			
• by expressing the quadratic in, if possible, and av	veraging the			
zeros at r and s to locate the				
• by the common factor from $ax^2 + bx$ to determine two				
points on the parabola that are symmetrically opposite each other, and averaging the				
<i>x</i> -coordinates to determine the <i>x</i> -coordinate of the vertex.				
• by using a graphing calculator.				

Completing the Square:

 $h(t) = 5t^2 + 40t + 100$

In Class Assignment: p. 153 #1, 2, 3; Homework: p. 153 #4, 5, 7, 9

\S 3.3: Inverse of a Quadratic Function

The inverse of a quadratic function undoes what the original function has done. It is a
relation that opens either to the or to the
If the original quadratic opens up $(a > 0)$, the inverse opens to the
If the original quadratic opens down (a < 0), the inverse opens to the
The equation of the inverse of a quadratic function can be found by x and y
in the vertex form and solving for y.
In the equation of the inverse of a quadratic function, the square root function
represents the of the parabola, while the square root
represents the
The inverse of a quadratic function can be a function if the of the original function is
·
Example: Determine the equation of the inverse

 $f(x) = 2(x+5)^2 - 3$

In Class Assignment: p. 160 #1, 2, 3 ; Homework: p. 161 #4, 5, 6, 7

\S 3.4: Operations With Radicals

Entire radicals can sometimes be simplified by expressing them as the ______ of two

radicals, one of which contains a ______. This results in a mixed radical.

- $\sqrt{a} \times \sqrt{b} = \sqrt{ab}$ for $a \ge 0, b \ge 0$
- $c\sqrt{a} \times d\sqrt{b} = cd\sqrt{ab}$ for $a \ge 0, b \ge 0$

The only radicals that can be added or subtracted into a single term are ______ radicals.

An answer containing a radical is an ______ answer. An answer containing a decimal is an

_____ answer. A ______ radical is in simplest form when the smallest

possible number is written under the radical sign.

Example 1: Simplifying radicals involving perfect-square factors

a)
$$\sqrt{72}$$
 b) $5\sqrt{27}$

Example 2: Changing mixed radicals to entire radicals

a) $4\sqrt{3}$ b) $-6\sqrt{5}$

Example 3: Multiplying Radicals

a) $\sqrt{3}\sqrt{11}$ b) $-2\sqrt{6} \times 5\sqrt{6}$ c) $(3-\sqrt{3})(3+\sqrt{6})$

In Class Assignment: p. 167 #1, 2, 3; Homework: p. 168 #4, 5, 6, 7, 13, 15

§ 3.5: Exploring Graphs of Rational Functions

All quadratic equations can be expressed in the form $ax^2 + bx + c = 0$ by algebraic techniques. Quadratic equations can be solved by ______ the corresponding functions $f(x) = ax^2 + bx + c$ and locating the ______, or _____, either by hand or by technology. These zeros are the ______ or _____ of the equation $ax^2 + bx + c = 0$. Quadratic equations can also be solved by ______ with the quadratic formula: _______ Depending on the problem and the degree of accuracy required, the solutions of a quadratic equation may be expressed exactly by using ______ or _____ numbers, or

approximately with _____.

Example 1: Determine roots of equation by factoring

a)
$$x^2 + 5x + 4 = 0$$
 b) $2x^2 - 7x - 4 = 0$

Example 2: Use the quadratic formula to determine roots

b)
$$3x^2 + 2x - 8 = 0$$

b) $-2x^2 + 3x - 6 = 0$

In Class Assignment: p. 177 #1bc, 2ad, 4; Homework: p. 178 #5, 6, 8, 17

Nguyen

\S 3.6 – The Zeros of a Quadratic Function

A quadratic function can have _____, ____, or _____ zeros. You can determine the number of zeros of a zeros either by ______ or by ______ the function. The number of zeros of a quadratic function can be determined by ______, _____, and ______. For a quadratic equation $ax^2 + bx + c = 0$ and

its corresponding function $f(x) = ax^2 + bx + c$, use this table:

Value of the Discriminant	Number of Zeros / Solutions
$b^2 - 4ac > 0$	2
$b^2 - 4ac = 0$	1
$b^2 - 4ac < 0$	0

The number of zeros can be determined by the location of the vertex relative to the x-axis, and the

direction of opening:

- If a > 0, and the vertex is <u>above</u> the x-axis, there are _____ zeros.
- If a > 0, and the vertex is <u>below</u> the x-axis, there are _____ zeros.
- If a < 0, and the vertex is <u>above</u> the x-axis, there are _____ zeros.
- If a < 0, and the vertex is <u>below</u> the x-axis, there are <u>zeros</u>.
- If the vertex is on the x-axis, there is _____ zero.

Example 1: State the number of zeros

a)
$$f(x) = 3x^2 - 5$$

b) $f(x) = 3(x+2)^2$

c)
$$f(x) = -4(x+3)^2 - 5$$

Example 2: Calculate the value of $b^2 - 4ac$ to determine the number of zeros

a)
$$f(x) = 2x^2 - 6x - 7$$

b)
$$f(x) = 9x^2 - 14.4x + 5.76$$

In Class Assignment: p. 185 # 1bcf, 3bc; Homework: p. 186 #5, 6, 7, 8, 17

\S 3.7 – Families of a Quadratic Functions

If the value of *a* is varied in a quadratic function expressed in a certain way, a family of parabolas similar to it will be created.

The algebraic model of a quadratic function can be determined algebraically.

- If the zeros are known, write in factored form with *a* unknown, substitute another known point, and solve for *a*.
- If the vertex is known, write in vertex form with a unknown, substitute a known point,

and solve for a.

Example 1: Determine the equation of parabola with x-intercepts

-4 and 3, and that passes through (2,7)

Example 2: Determine the equation of the parabola with vertex

(-2, 5) and that passes through (4, -8)

In Class Assignment: p. 192 #1, 2, 3; Homework: p. 193 #4bcd, 5bcd, 6, 7