\qquad

Chapter 3: Quadratic Functions

§ 3.1: Properties of Quadratic Functions

Parts of a Parabola

The graphs of quadratic functions have no \qquad restrictions. Quadratic functions can be represented by \qquad by \qquad , or by \qquad .

Quadratic Functions can be expressed in three different algebraic Forms:

Factored Form	Vertex Form	Standard Form

How can we determine whether a function is quadratic?

Example 1: Linear or Quadratic?

a)

\mathbf{x}	\mathbf{y}	FD	SD
-2	15		
-1	11		
0	7		
1	3		
2	-1		

b)

\mathbf{x}	\mathbf{y}	$\mathbf{F D}$	$\mathbf{S D}$
-2	7		
-1	4		
0	3		
1	4		
2	7		

In Class Assignment: p. $145 \# 1 \mathrm{bc}, 2,3$; Homework: p. $146 \# 4,5,7,8$

§ 3.2: Determining Maximum and Minimum Values of Quadratic Functions

The maximum or minimum value of a quadratic function is the \qquad of the vertex.

If a >0 in standard form, factored form, or vertex form, then the parabola opens \qquad .

The quadratic has a \qquad value.

If $\mathrm{a}<0$ in standard form, factored form, or vertex form, then the parabola opens \qquad .

The quadratic has a \qquad value.

The vertex can be found from the standard form $f(x)=a x^{2}+b x+c$ algebraically:

- by \qquad to put the quadratic in vertex form
- by expressing the quadratic in \qquad , if possible, and averaging the zeros at r and s to locate the \qquad
- by \qquad the common factor from $a x^{2}+b x$ to determine two points on the parabola that are symmetrically opposite each other, and averaging the x-coordinates to determine the x-coordinate of the vertex.
- by using a graphing calculator.

Completing the Square:

$h(t)=5 t^{2}+40 t+100$

In Class Assignment: p. $153 \# 1,2,3$; Homework: p. $153 \# 4,5,7,9$

§ 3.3: Inverse of a Quadratic Function

The inverse of a quadratic function undoes what the original function has done. It is a
\qquad relation that opens either to the \qquad or to the \qquad .

If the original quadratic opens up $(a>0)$, the inverse opens to the \qquad .

If the original quadratic opens down ($a<0$), the inverse opens to the \qquad .

The equation of the inverse of a quadratic function can be found by \qquad x and y
in the vertex form and solving for y .

In the equation of the inverse of a quadratic function, the \qquad square root function
represents the \qquad of the parabola, while the \qquad square root
represents the \qquad .

The inverse of a quadratic function can be a function if the \qquad of the original function is

Example: Determine the equation of the inverse

$$
f(x)=2(x+5)^{2}-3
$$

In Class Assignment: p. 160 \#1, 2, 3 ; Homework: p. 161 \#4, 5, 6, 7

§ 3.4: Operations With Radicals

Entire radicals can sometimes be simplified by expressing them as the \qquad of two radicals, one of which contains a \qquad . This results in a mixed radical.

- $\sqrt{a} \times \sqrt{b}=\sqrt{a b} \quad$ for $a \geq 0, b \geq 0$
- $c \sqrt{a} \times d \sqrt{b}=c d \sqrt{a b}$ for $a \geq 0, b \geq 0$

The only radicals that can be added or subtracted into a single term are \qquad radicals.

An answer containing a radical is an \qquad answer. An answer containing a decimal is an
\qquad answer. A \qquad radical is in simplest form when the smallest
possible number is written under the radical sign.

Example 1: Simplifying radicals involving perfect-square factors

a) $\sqrt{72}$
b) $5 \sqrt{27}$

Example 2: Changing mixed radicals to entire radicals
a) $4 \sqrt{3}$
b) $-6 \sqrt{5}$

Example 3: Multiplying Radicals

a) $\sqrt{3} \sqrt{11}$
b) $-2 \sqrt{6} \times 5 \sqrt{6}$
c) $(3-\sqrt{3})(3+\sqrt{6})$

In Class Assignment: p. 167 \#1, 2, 3; Homework: p. 168 \#4, 5, 6, 7, 13, 15

§ 3.5: Exploring Graphs of Rational Functions

All quadratic equations can be expressed in the form $a x^{2}+b x+c=0$ by algebraic techniques.

Quadratic equations can be solved by \qquad the corresponding functions
$f(x)=a x^{2}+b x+c$ and locating the \qquad , or \qquad , either by hand or by technology. These zeros are the \qquad or \qquad of the equation $a x^{2}+b x+c=0$.

Quadratic equations can also be solved by \qquad with the quadratic formula:

Depending on the problem and the degree of accuracy required, the solutions of a quadratic equation may be expressed exactly by using \qquad or \qquad numbers, or approximately with \qquad .

Example 1: Determine roots of equation by factoring

a) $x^{2}+5 x+4=0$
b) $2 x^{2}-7 x-4=0$

Example 2: Use the quadratic formula to determine roots

b) $3 x^{2}+2 x-8=0$
b) $-2 x^{2}+3 x-6=0$

In Class Assignment: p. 177 \#1bc, 2ad, 4; Homework: p. 178 \#5, 6, 8, 17

$\S 3.6$ - The Zeros of a Quadratic Function

A quadratic function can have \qquad , \qquad , or \qquad zeros. You can determine the number of zeros either by \qquad or by \qquad the function. The number of zeros of a quadratic function can be determined by \qquad , \qquad and \qquad . For a quadratic equation $a x^{2}+b x+c=0$ and
its corresponding function $f(x)=a x^{2}+b x+c$, use this table:

Value of the Discriminant	Number of Zeros / Solutions
$b^{2}-4 a c>0$	2
$b^{2}-4 a c=0$	1
$b^{2}-4 a c<0$	0

The number of zeros can be determined by the location of the vertex relative to the x-axis, and the direction of opening:

- If a >0, and the vertex is above the x -axis, there are \qquad zeros.
- If a >0, and the vertex is below the x-axis, there are \qquad zeros.
- If a <0, and the vertex is above the x -axis, there are \qquad zeros.
- If $\mathrm{a}<0$, and the vertex is below the x -axis, there are \qquad zeros.
- If the vertex is on the x -axis, there is \qquad zero.

Example 1: State the number of zeros

a) $f(x)=3 x^{2}-5$
b) $f(x)=3(x+2)^{2}$
c) $f(x)=-4(x+3)^{2}-5$

Example 2: Calculate the value of $b^{2}-4 a c$ to determine the number of zeros
a) $f(x)=2 x^{2}-6 x-7$
b) $f(x)=9 x^{2}-14.4 x+5.76$

§ 3.7 - Families of a Quadratic Functions

If the value of a is varied in a quadratic function expressed in a certain way, a family of parabolas similar to it will be created.

The algebraic model of a quadratic function can be determined algebraically.

- If the zeros are known, write in factored form with a unknown, substitute another known point, and solve for a.
- If the vertex is known, write in vertex form with a unknown, substitute a known point, and solve for a.

Example 1: Determine the equation of parabola with x-intercepts

-4 and 3 , and that passes through $(2,7)$

Example 2: Determine the equation of the parabola with vertex

$(-2,5)$ and that passes through $(4,-8)$

In Class Assignment: p. 192 \#1, 2, 3; Homework: p. 193 \#4bcd, 5bcd, 6, 7

