\qquad

Chapter 2: Equivalent Algebraic Expressions

§ 2.1: Adding and Subtracting Polynomials

Definitions:

Polynomial:

Like Terms:
\qquad
\qquad

Example 1:
a) $\left(3 x^{2}-7 x+5\right)+\left(x^{2}-3 x+2\right)$
b) $\left(x^{2}-6 x+2\right)-\left(x^{2}-6 x+3\right)$
c) $2 x(x+1)+3 x(x-1)$
d) $x(x-6)-2 x^{2}(x-4)$

Example 2:

Nyg and Petra are hosting a dinner for 300 guests. Cheers banquet hall has quoted these charges:

- $\$ 500$, plus $\$ 10$ per person, for food,
- $\$ 200$, plus $\$ 20$ per person, for drinks, and
- a discount of $\$ 5$ per person if the number of guests exceeds 200 .

Nyg and Petra have created two different functions for the total cost, where n represents the number of guests and $n>200$.

Nyg's cost function: $C_{1}(n)=(10 n+500)+(20 n+200)-5 n$

Petra's cost function: $C_{2}(n)=(10 n+20 n-5 n)+(500+200)$

Are these functions equivalent?

In Class Assignment: p. $88 \# 1,2,3$; Homework: p. $88 \# 6,8$

§ 2.2: Multiplying Polynomials

Suppose we want to simplify $f(x) \times g(x)$ where $f(x)=-5 x+2$ and $g(x)=-2 x+1$.

We can use the 3 Rules of Algebra:

1. The Commutative Property:
2. The Associative Property: \qquad
3. The Distributive Property: \qquad

Example 1:

a) $2 x(x+5)$
b) $(2 x+1)(3 x+5)$
c) $(3 x-2)\left(x^{2}-5 x+1\right)$
d) $(2 x-3)^{3}$

Example 2:

A rectangle is twice as long as it is wide. Predict how the area will change if the length of the rectangle is increased by 1 and the width is decreased by 1 . Write an expression for the change in area and interpret the result.

In Class Assignment: p. 95 \#1, 2, 3; Homework: p. 96 \#4ace, 5bdf, 9, 11
\qquad

Chapter 2: Equivalent Algebraic Expressions

§ 2.3: Factoring Polynomials

Factoring a polynomial means writing it as a \qquad . So factoring is the opposite of \qquad .

If a polynomial has more than three terms, you may factor it by \qquad . This is
only possible if the grouping of terms allow you to divide the same \qquad
\qquad from each group.

To factor a polynomial fully means that only \qquad and \qquad remain as a common factors in the factored expression. To factor polynomials fully, you can use factoring strategies that include:

- \qquad
-
-
-
-
-

Example 1: Common Factoring

a) $2 x^{2}+4 x$
b) $5 y^{3}+15 y^{2}$
c) $4 x(x-5)+3(x-5)$
d) $2 y(3-y)-y(3-y)$

Example 2: Multi-Step Common Factoring aka Grouping

a) $f(x)=x^{3}-x^{2}-2 x-2$
b) $g(x)=x^{2}-y^{2}-10 y-25$

Example 3: Product and Sum
a) $x^{2}-4 x-12$
b) $y^{2}+6 y+8$

Example 4: Decomposition

a) $12 x^{2}-7 x-10$
b) $2 y^{2}+17 y+35$

Example 5: Difference of Squares

a) $\mathrm{x}^{2}-25$
b) $100-y^{2}$
c) $8 x^{2}-50 y^{2}$

In Class Assignment: p. $102 \# 1,2,3$; Homework: p. $103 \# 4,6,7,9,10$

§ 2.4: Simplifying Rational Functions

A rational function can be expressed as the \qquad of two polynomial functions.

For example,

$$
f(x)=\frac{6 x+2}{x-1} ; x \neq 1
$$

Both rational functions and rational expressions are undefined for numbers that make the denominator \qquad . Those numbers must be excluded or \qquad from being possible values for the variables. As a result, for all rational functions, the domain is
\qquad , except those numbers that make the denominator equal zero.

Rational functions and rational expressions can be simplified by factoring the \qquad and \qquad and then dividing both by their \qquad .

The restrictions are found by determining all the \qquad of the denominator. If the denominator contains two or more terms, the zeros can be determined from its \qquad before the function or expression is \qquad .

Example 1: Evaluate the following rational expressions for $\boldsymbol{x}=2$.

a) $\frac{(x-3)}{x}$
b) $\frac{x-2}{x-5}$
c) $\frac{2 x}{x-2}$
*Rational expressions are undefined when the denominator is zero.

Example 2: For which value(s) are the following rational expressions undefined?
a) $\frac{x^{2}-4 x}{x+2}$
b) $\frac{x^{2}}{x+1}$
c) $\frac{3 x}{x^{2}+9 x+18}$

Example 3: Simplifying Rational Expressions

a) $\frac{2 x^{2}-6 x-36}{2 x-12}$
b) $\frac{x^{2}-5 x-6}{x^{2}-36}$
c) $\frac{2 x^{2}-10 x}{4 x}$
d) $\frac{5-x}{x-5}$

In Class Assignment: p. 112 \#1, 2, 3; Homework: p. $113 \# 4,5,7,14$

§ 2.5: Exploring Graphs of Rational Functions

The restricted values of rational functions correspond to two different kinds of graphical features:
\qquad and \qquad .

Holes occur at \qquad that result from a factor of the denominator
that is also a factor of the numerator. For example,

$$
h(x)=\frac{x^{2}+7 x+12}{x+3}
$$

has a hole at \qquad , since $h(x)$ can be simplified to the polynomial

$$
h(x)=\frac{(x+4)(x+3)}{(x+3)}=x+4
$$

Vertical asymptotes occur at restricted values that are still \qquad of the denominator after
simplification. For example,

$$
v(x)=\frac{5}{x-8}
$$

has a vertical asymptote at \qquad .

Example 1: Holes

Some rational functions can be simplified to polynomials.
a) Graph the function: $f(x)=\frac{x^{2}-4}{x-2}$ then simplify:

c) Trace the graph near $x=2$. Describe what happened to the graph at $x=2$.

Example 2:

a) Determine another rational function that simplifies to a
polynomial with a hole at $x=1$. (i.e. restriction $x \neq 1$).
b) Graph your function and describe what happens to the graph at $x=1$.

Example 3: Asymptotes

Some rational functions cannot be simplified.
a) Graph $g(x)=\frac{1}{x-2}$ and trace the graph near $x=2$.
b) Describe what happens to the graph near $x=2$.

Example 4:

a) Determine another rational function with a vertical
asymptote at $x=1$.
b) Graph your function and describe what happens to the
graph at $x=1$.

Homework: p. 116 \#1-3

§ 2.6: Multiplying and Dividing Rational Functions

The procedures you use to multiply or divide rational numbers can be used to multiply and
divide \qquad . That is, if A, B, C, and D are polynomials, then:

$$
\begin{gathered}
\frac{A}{B} \times \frac{C}{D}=\frac{A C}{B D}, \text { provided that } \mathrm{B}, \mathrm{D} \neq 0 \\
\frac{A}{B} \div \frac{C}{D}=\frac{A}{B} \times \frac{D}{C}=\frac{A D}{B C}, \text { provided that } \mathrm{B}, \mathrm{D} \neq 0
\end{gathered}
$$

To multiply rational expressions,
\bullet \qquad the numerators and denominators, if possible

- \qquad out any factors that are common to the numerator and denominator.
- multiply the numerators, multiply the denominators, and then write the result as a
\qquad rational expression

To divide two rational expressions,

- factor the numerators and denominators, if possible
- multiply by the \qquad of the divisor
- divide out any factors \qquad to the numerator and denominator
- write the result as a single rational expression

To determine the \qquad , solve for the zeros of all of the denominators in the factored expression, in the case of division, bot the numerator and denominator of the divisor must be
used. Both are needed because the \qquad of this expression is used in the calculation.

Example 1: Simplify

a) $\frac{2 x}{5} \times \frac{5 x}{2}$
b) $\frac{(x+2)(x-2)}{(x-4)} \times \frac{(x-4)}{2(x-2)}$

Example 2: Simplify and State Restrictions

a) $\frac{(x+2)^{2}}{(x-2)^{2}} \times \frac{x^{2}-4 x+4}{2(x+2)}$
b) $\frac{21 x-3 x^{2}}{16 x+4 x^{2}} \div \frac{14 x-9 x+x^{2}}{12+7 x+x^{2}}$

In Class Assignment: p. $121 \# 1,3,4$; Homework: p. 122 \#5cd, 6ac, 7bd, 8

