Chapter 1: Introductions to Functions

§ 1.1: Functions and Relations

A function is a \qquad in which each value of the \qquad corresponds with only one value of the \qquad .

Functions can be represented as:

- a table of values
- a set of ordered pairs
- a map diagram
- a graph
- an equation.
\qquad : the set of all values of the independent variable (usually the x-values).
\qquad : the set of all values of the dependent variable (usually the y-values).

A graph represents a function if every vertical line intersects the graph in at most one point.

To check whether a graph represents a function, use the vertical line test (VLT).

A relation that is a function

A relation that is not a function

You can also recognize whether a relation is a function from its equation.

- Linear relations (straight lines): $\boldsymbol{y}=\boldsymbol{m} \boldsymbol{x}+\boldsymbol{b}$ or $\boldsymbol{A} \boldsymbol{x}+\boldsymbol{B} \boldsymbol{y}=\boldsymbol{C}$ are all functions.
- Quadratics (parabolas) $\boldsymbol{y}=\boldsymbol{a} \boldsymbol{x}^{2}+\boldsymbol{b} \boldsymbol{x}+\boldsymbol{c}$ or $\boldsymbol{y}=\boldsymbol{a}(\boldsymbol{x}-\boldsymbol{h})^{2}+\boldsymbol{k}$ are also functions.

Example 1: Find the domain and range.
a)

b)

Domain: \qquad Domain: \qquad

Range: \qquad Range: \qquad
c) $\{(1,3),(1,4),(1,5),(1,6)\}$
d) $y=\sqrt{x}$

Domain: \qquad Domain: \qquad

Range: \qquad Range: \qquad
e) $y=\frac{1}{x}$
f) $y=(x-4)^{2}-3$

Domain: \qquad Domain: \qquad

Range: \qquad Range: \qquad

Example 2: Which of the following are functions? Justify your answer.
a)

b)

\qquad
\qquad
c) $\quad(1,3),(2,4),(3,5),(4,6)\}$
d) $\quad\{(1,3),(1,4),(1,5),(1,6)\}$

Mapping

A mapping diagram is a representation that can be used when the relation is given as set of ordered pairs.

In Class Assignment: p. $10 \# 1,2,4$; Homework: p. $11 \# 7,8$

§ 1.2: Function Notation

Symbols such as $f(x)$ are called \qquad , which is used to represent the value of the dependent variable y for a given value of the indepdent variable x. For this reason, y and $f(x)$ are interchangeable in the equation of a function, so $y=f(x)$.

- $\quad f(x)$ is read " f at x " or " f of x."
- $\quad f(a)$ represents the value or output of the function when the input is $x=a$. The output depends on the equation of the function.

To evaluate $f(a)$, substitute a for x in the equation for $f(x)$.

- $\quad f(a)$ is the y-coordinate of the point on the graph of f with x-coordinate a.

For example, if $f(x)$ takes the value 3 at $x=2$, then $f(2)=3$ and the point $(2,3)$ lies on the graph of f.

Example 1:

If $\quad f(x)=2 \mathrm{x}+3$, find:
a) $f(6)$
b) $f(-5)$

A
c) $f(x+1)$
d) $f(2 x)$

Example 2:

Given the graph to the right, find:
a) $f(2)$
b) $f(-3)$
c) x if $f(x)=2$

d) x if $f(x)=0$

Example 3:

A company rents cars for $\$ 50$ per day plus $\$ 0.15 / \mathrm{km}$.
a) Express the daily rental cost, C as a function of the

number of kilometres, d travelled.
b) Determine the rental cost if you drive 472 km in one day.
c) Determine how far you can drive in a day for $\$ 80$.
d) Is $C(d)$ a function? Justify your answer.

In Class Assignment: p. 22 \#1-3; Homework: pp. 23-24 5-7, 15, 16

Chapter 1: Introductions to Functions

§ 1.3: Exploring Properties of Parent Functions

Equation of Function	Name of Function	Sketch of Graph	Special Features/ Symmetry	Domain	Range
$f(x)=x$	linear function		- straight line that goes through origin - slope is 1 - divides the plane exactly in half diagonally - graph only in quadrants 1 and 3		
$f(x)=x^{2}$	quadratic function		- parabola - opens up - vertex at the origin - y has a minimum value - y-axis is axis of symmetry - graph only in quadrants 1 and 2		

Chapter 1: Introductions to Functions

§ 1.4: Determining the Domain and Range of a Function

The \qquad of a function is the set of all values of the independent variable of a relation for which the function is defined. The \qquad of a function depends on the equation of
the function. The domain and range of a function can be determined from its \qquad ,
from \qquad , or from \qquad .

All linear functions include all the real numbers in their domains. Real numbers are numbers that are either \qquad or \qquad . These include
positive and negative integers, zero, fractions, and irrational numbers such as $\sqrt{2}$ and π.

Linear functions of the form $f(x)=m x+b$, where $m \neq 0$, have range $\{$ \qquad \}.

Consent functions $f(x)=b$ have range $\left\{ـ_{\square}\right\}$.

All quadratic functions have domain \{ \qquad \}. The range of a quadratic function depends on the \qquad or \qquad value and the

The domains of square root functions are \qquad because the square root sign refers to the \qquad square root. For example,

- The function $f(x)=\sqrt{x}$ has domain $=\{$ \qquad $\}$ and range $=\{$ \qquad \}.
- The function $g(x)=\sqrt{x-3}$ has domain $=\{$ \qquad $\}$ and range $=\{$ \qquad \}.

When working with functions that model real-world situations, consider whether there are any restrictions on the variables. For example, negative values often have no meaning in a real context, so domain or range must be restricted must be restricted to nonnegative values.

Example: State the domain and range for the following.
a)

b)

Domain: \qquad Domain: \qquad

Range: \qquad Range: \qquad
c)

d)

Domain: \qquad Domain: \qquad

Range: \qquad Range: \qquad

In Class Assignment: p. 35 \#1-3, Homework: pp. 36-37 \#6, 7, 9, 11

§ 1.5: The Inverse Functions and Its Properties

The inverse of a linear function is the reverse of the original function. It undoes what the original function has done. A way to determine the inverse function is to switch the two variables and solve for the previously independent variable.

- For example, if $y=4 x-3$, rewrite this equation as $x=4 y-3$ and solve for y to get $y=$ $\frac{x+3}{4}$.
- $\quad f^{-1}$ is the notation for the inverse function of f.

Example 1: Determine the inverse of each function
a) $\quad f(x)=5 x+3$
b) $f(x)=-2$
c) $f(x)=2 x-9$

Example 2: For each of the above determine $f^{-1}(3)$.
a)
b)
c)

In Class Assignment: p. $48 \# 1,2,4$; Homework: p. $49 \# 5,9,10$

§ 1.6: Exploring Transformations of Parent Functions

In functions of the form $g(x)=a f(x-d)+c$, the constants a, c, and d each change the location or shape of the graph of $f(x)$. The shape of the graph of $g(x)$ depends on the graph of the parent function $g(x)$ and on the value of a.

Vertical Translations

Graph the parent function $f_{1}(x)=x^{2}$, then graph $f_{2}(x)=x^{2}+2$.

How does it compare? \qquad

Horizontal Translations

Graph the parent function $g_{1}(x)=|x|$, then graph $g_{2}(x)=|x-3|$.

How does it compare? \qquad

Reflections

Graph the parent function $h_{1}(x)=\sqrt{x}$, then graph $h_{2}(x)=-\sqrt{x}$ and $h_{3}(x)=\sqrt{-x}$.

How does it compare? \qquad

In conclusion:

$\boldsymbol{f}(\boldsymbol{x}) \pm \boldsymbol{c}$ moves the graph \qquad by \qquad units.
$\boldsymbol{g}(\boldsymbol{x} \pm \boldsymbol{d})$ moves the graph \qquad by \qquad units.

The graph of $-\boldsymbol{h}(\boldsymbol{x})$ is a reflection of the graph $\boldsymbol{h}(\boldsymbol{x})$ in \qquad .

The graph of $\boldsymbol{h}(-\boldsymbol{x})$ is a reflection of the graph $\boldsymbol{h}(\boldsymbol{x})$ in \qquad .

In Class Assignment: p. $51 \# 1,2$; Homework: p. $51 \# 3$

