MPM2D: Principles of Mathematics

Unit <u>2</u>: Analytic Geometry

V. Nguyen

1

Simplifying Radicals Analytic Geometry 1

* <u>Goal</u>: Simplify radicals (or roots).

Distributive Law of Radicals For any real numbers *a* and *b*, $\sqrt{ab} = \sqrt{a}\sqrt{b}$

Radicals

A **radical**, also called a *root*, is typically represented using the form $\sqrt[n]{x}$, where *x* is the *radicand*, while *n* is the *index*.

For example, the third root (cube root) of 8 is written $\sqrt[3]{8}$ meaning "the value which, when multiplied by itself three times, gives eight."

If no index is given, the *square root* $\sqrt[2]{x}$ or \sqrt{x} is implied.

Mixed Radicals is the product of a whole number and a radical. For example, $2\sqrt{3} = 2 \times \sqrt{3}$.

Also, $\sqrt{18} = \sqrt{9}\sqrt{2} = 3\sqrt{2}$. **Verify** with a <u>calculator</u>.

MPM2D: Principles of Mathematics

Simplifying Radicals Examples: *Simplify. <u>Tips:</u> 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, ... a) $\sqrt{40}$ b) $\sqrt{15}$ c) $\sqrt{128}$ d) $\sqrt{252}$ e) $-\sqrt{56}$ f) $\sqrt{-144}$

Investigation:

Plot the points A(2,3) and B(10,7), and draw line segment AB. Find the third point C such that line segments AC and BC make a right triangle with AB as the hypotenuse.

a) How long are *AC* and *BC*?

b) How long is *AB*?

Length of a HORIZONTAL Line Segment:

The length of the **horizontal** line segment *PQ* connecting $P(x_1, y_1)$ and $Q(x_2, y_2)$ is given by $|PQ| = x_2 - x_1$

Length of a VERTICAL Line Segment:

The length of the **vertical** line segment *PQ* connecting $P(x_1, y_1)$ and $Q(x_2, y_2)$ is given by $|PQ| = y_2 - y_1$

Example 1: Determine |*JK*| for *J*(5,-2) and *K*(11,-2).

Example 2: Determine the value of k if |EF| = 12 for E(-3, 1) and F(-3, k).

Length of a Line Segment:

The length of the **line segment** *PQ* connecting *P*(*x*₁,*y*₁) and $Q(x_2,y_2)$ is given by $|PQ| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

Sometimes, the length of a line segment is phrased "the distance between two points", and the formula above is best known as the **Distance Formula**.

Example 1: Verify that $|AB| = 4\sqrt{5}$ for A(2,3) and B(10,7).

Example 2: Determine the distance between the points G(1,-4) and H(-6,-3).

Example 3:

Middlefield is 12 km South and 5 km West from the Markham Museum. Markville is 7 km South and 11 km East of the Markham Museum. If a helicopter flies directly from Middlefield to the Markham Museum, how far does it fly?

Investigation: Draw a right triangle *ABC* given that *A*(2,3), *B*(10,7), and *C*(10,3). Determine the midpoints on each line segment that are *equidistant* from the *endpoints*) of *AC*, *BC*, and *AB*. How are the coordinates related?

Midpoint of a Horizontal Line Segment

If *PQ* is a horizontal line segment with endpoints at $P(x_1,k)$ and $Q(x_2,k)$, the midpoint *M* is located at M(, *k*).

Midpoint of a Vertical Line Segment

If *PQ* is a vertical line segment with endpoints at $P(k,y_1)$ and $Q(k,y_2)$, the midpoint *M* is located at M(k,).

Example: Determine the coordinates of the midpoint of A(3,7) and B(3,19).

Midpoint of a Line Segment

If *PQ* is a line segment from $P(x_1, y_1)$ and $Q(x_2, y_2)$, then the midpoint of *PQ* is located at M(,).

Example 1: Determine the coordinates of the midpoint of the line segment connecting A(4,9) and B(14,3).

Example 2: Determine the coordinates of the midpoint of the line segment connecting *J*(-15,13) and *K*(-3,-7).

Example 3: If M(5,-2) is the midpoint of PQ and P is at (-8,11), determine the coordinates of Q.

Example 3: Determine if the line y = -3x + 5 bisects the line segment *AB*, given *A*(-4,7) and *B*(8,-9).

Example 3: If M(5,-2) is the midpoint of PQ and P is at (-8,11), determine the coordinates of Q.

Example 4: Determine if the line y = -3x + 5 bisects the line segment *AB*, given *A*(-4,7) and *B*(8,-9).

Classifying Triangles

Triangles are generally classified in two ways:

- **1.** Magnitude of its <u>sides:</u>
 - Equilateral (three equal sides/angles)
 - Isosceles (two equal sides)
 - Scalene (all side lengths are distinct)
- **2.** Magnitude of its <u>angles:</u>
 - Right (one 90° angle)
 - Acute (all angles less than 90°)
 - Obtuse (one angle greater than 90°)

Classifying Triangles

Example 1: Classify the triangle with vertices A(-8,6), B(5,9) and C(1,-7) as equilateral, isosceles or scalene.

Classifying Triangles

Example 2: Determine whether the triangle with vertices P(-4,4), Q(2,-8) and R(4,-8) contains a right angle.

Verifying Triangles

Example 3: Show that it is not possible for the points E(-5,8), F(-2,6) and G(4,2) to form a triangle.

Properties of Triangles

Triangle Midpoint Theorem:

If *M* and *N* are the midpoints of *AB* and *AC* in $\triangle ABC$, then |BC| = 2|MN| and BC | |MN|. Note (||-parallel to)

Properties of Triangles

Example:

In the diagram below, P and Q are the midpoints of EF and EG. Determine |EF| and |PQ|.

We often classify *quadrilaterals* using <u>slopes</u>, <u>midpoints</u> or <u>lengths</u>. A quadrilateral is any *four-sided* polygon. They can be *convex* (no angle is greater than 180°). Special types of quadrilaterals have unique properties.

1. **Parallelogram:** two pairs of parallel sides, opposite lengths are equal.

2. **Rectangle:** parallelogram that contains four 90° angles.

3. **Trapezoid:** exactly one pair of parallel sides. If the two non-parallel sides are equal in length, it is an *isosceles trapezoid*. Otherwise it is a *scalene trapezoid*.

4. **Kite:** when all interior angles are less than 180°, it is a *kite*. When one angle is greater than 180°, it is a *chevron*.

Example 1: Verify that the quadrilateral *ABCD* with vertices at A(-1,4), B(6,1), C(3,-6) and D(-4,-3) is a square.

Example 2: Verify that the quadrilateral *EFGH* with vertices at E(-8,2), F(4,6), G(6,-2) and H(-6,-6) is a parallelogram, but not a rhombus or a rectangle.

Example 3: Classify the quadrilateral *PQRS* with vertices at *P*(-6,2), *Q*(6,6), *R*(2,-6) and *S*(-8,-8).

Example 4: A quadrilateral has three vertices at A(-2,2), B(4,0), and C(6,-4). Determine the coordinates of D so that the quadrilateral is a parallelogram.

MPM2D: Principles of Mathematics

Unit <u>2</u>: Analytic Geometry 2

V. Nguyen

Consider a circle centred at the origin with a radius of 5 units.

30

In all cases, the hypotenuse of any right triangle formed is a radius of the circle, *r*.

If the horizontal arm of a right triangle formed has a length of *x* units, and the vertical arm has a length of *y* units, then the length of the hypotenuse can be calculated using the Pythagorean Theorem.

This gives us an equation for a circle, centred at the origin.

$$x^2 + y^2 = r^2$$

Example 1: Determine the equation of a circle, centred at the origin, with a radius of 3 units.

Example 2: A circle has equation $x^2 + y^2 = r^2$. Determine the length of its radius.

Example 3: Determine the equation, and length of the radius, of a circle centred at the origin that passes through P(-2,3).

*Graph the circle and point to confirm calculations.

Example 4: Determine whether P(6,-8) is on, inside, or outside of the circle with radius 10.

*Graph the circle and point to confirm calculations.

Example 5: Determine whether P(-4,5) is on, inside, or outside of the circle with equation $x^2 + y^2 = 36$

*Graph the circle and point to confirm calculations.

Summary:

Minds On:

Determine the equation and length of a radius of a circle, centred at the origin, that passes through the point P(9,-3).

Secants and Chords

Consider the circle and line as shown.

Observations:

Now consider the circle and line as shown.

Observations:

MPM2D: Principles of Mathematics

Tangents

Equation:

y =

Tangents

Equation of a Tangent to a Circle Centre at the Origin:

$$y = -\frac{x_p}{y_p}x + \frac{\left(x_p^2 + y_p^2\right)}{y_p}$$

Using the previous example, the equation of the tangent at (4,3) is:

Example 1: The line y = 3x - 10 is tangent to a circle, centred at the origin, when x = 3. Determine the equation and radius of the circle.

Example 2: Determine the equation of the tangent to the circle, centred at the origin with radius 13 units, when x = 5.

Summary:

Circumcentre of a Triangle

<u>Recap</u>: Determine the equation of the right bisector of the line segment from A(-4,-7) to B(10,1).

Right Bisectors In a Triangle

Consider the triangle below with vertices at A(0,6), B(7,5), and C(3,-3). Let's construct the right bisectors of AC and BC.

Right Bisectors In a Triangle

Since the right bisectors have *different* slopes, they must <u>intersect</u> somewhere. Use <u>substitution</u> to determine the POI.

<u>*Note</u>: the distance from the circumcentre, *P*, to each vertex should be the same. *HW*: Verify that it is 5 for this example.

Circumcentre of a Triangle

The right bisectors of the sides of a triangle intersect at a point called the <u>circumcentre</u>. The circumcentre is equidistant from all three vertices of the triangle.

Steps to find Circumcentre:

- 1. Determine midpoint of one side.
- 2. Determine slope of that side.
- 3. Determine perpendicular slope to that side.
- 4. Use perpendicular slope and midpoint to determine equation of the right bisector of that side.
- 5. Repeat steps 1-4 for another side.
- 6. Find the point of intersection of the two right bisectors.

Circumcentre of a Triangle

Example: Determine the radius of the circle that passes through P(-7,2), Q(11,-10) and R(11,14).

Shortest Distance

<u>Recap</u>: Determine the equation of the altitude from A(-4,7), given that B(-8,0) and C(2,-2).

Shortest Distance

Investigation 1: Determine the shortest distance from P(-6,5) to the line y = x + 3.

Shortest Distance

Investigation 2: Determine the area of the triangle with vertices A(3,6), B(-7,0) and C(5,-3).

