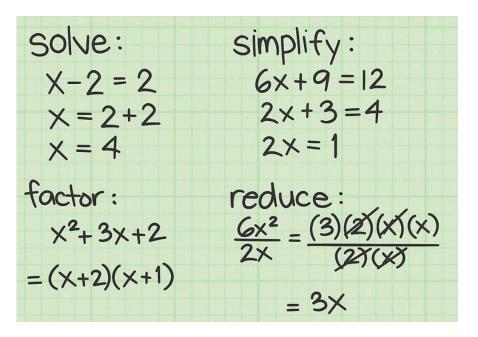
Unit <u>4</u>: Algebra Basics

V. Nguyen



1

Exponent Laws Algebra Basics 1

* <u>Goal:</u> Understand the definition of exponentiation in algebra.

Exponent Rules For $a \neq 0, b \neq 0$	
Product Rule	$a^x \times a^y = a^{x+y}$
Quotient Rule	$a^x \div a^y = a^{x-y}$
Power Rule	$\left(a^{x}\right)^{y}=a^{xy}$
Power of a Product Rule	$(ab)^x = a^x b^x$
Power of a Fraction Rule	$\left(\frac{a}{b}\right)^x = \frac{a^x}{b^x}$
Zero Exponent	$a^{0} = 1$
Negative Exponent	$a^{-x} = \frac{1}{a^x}$
Fractional Exponent	$a^{\frac{x}{y}} = \sqrt[y]{a^x}$

Consider the expression $a^2 \cdot a^3$, using the definition of exponentiation: $a^2 \cdot a^3 =$

If the bases are *not* the same, this rule *does not* apply. For example, the expression 2⁴·3² cannot be combined.

Product of Like Powers Law:

For any real non-zero values *x*, *y*, and *a*, $a^x \cdot a^y = a^{x+y}$

Now,
$$\frac{a^3}{a^2} =$$

Quotient of Like Powers **Law:** For any real non-zero values *x*, *y*, and *a*, $\frac{a^x}{a^y} = a^{x-y}$

Just like the Product Law, the bases **must** be the **same**.

- Now, consider $(a^2)^3$
- In general, $(a^x)^y$

Power of a Power Law:

For any real non-zero values *x*, *y*, and *a*, $(a^x)^y = a^{xy}$

Next, consider (*ab*)³

In general, $(ab)^x$

Power of a Product **Law:**

For any real, non-zero values *a*, *b*, and *x*, $(ab)^x = a^x b^x$

Finally, consider
$$\left(\frac{a}{b}\right)^2 =$$

In general, $\left(\frac{a}{b}\right)^x =$

<u>Power of a Quotient Law:</u> For any real, non-zero values *a*, *b*, and *x*, $\left(\frac{a}{b}\right)^x =$

Example 1:
Simplify the expression (a)
$$x^4x^7$$
 (b) $\frac{y^8}{y^6}$ (c) $(z^3)^3$ (d) x^4x^7 (e) $\left(\frac{x}{2}\right)^5$

Zero Exponent Law: For any real, non-zero value of a, $a^0 = 1$.

Why?

Negative Exponent Law: For any real, non-zero value of *a* and any real, positive value of *x*, $a^{-x} = \frac{1}{a^x}$

Why?

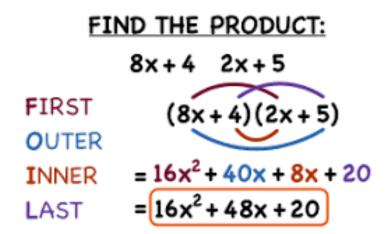
Example 2: Evaluate 1 234 567^o

Example 3: Express *x*⁻⁴ using positive exponents.

Example 4: Simplify $\frac{x^5y^3}{x^2y^7}$ using positive exponents.

Distributive Law Algebra Basics 2

* <u>Goal:</u> Understand and use the distributive law when multiplying two binomials.



Products of Two Binomials

Example 1: Expand and simplify (x + 2)(x + 5)

Example 2: Expand and simplify (2x - 1)(3x - 6)

Products of Two Binomials

Example 3: Expand and simplify (7 - 2x)(7 + 2x)

Example 4: Expand and simplify (4r + 5s)(2r - 6s)

Distributive Law Extension

Example 5: Expand and simplify $(x - 2)(x^2 + 3x - 5)$

Example 6: Expand and simplify $(x^2 + 5x - 1)(2x^2 - 4x + 3)$

Perfect Squares

 $(ax + c)^2 =$

Example 7: Expand and simplify $(2x + 7)^2$

Differences of Squares

(ax + c)(ax - c) =

Example 8: Expand and simplify (3x + 9)(3x - 9)

Factoring Polynomials Algebra Basics 3

* <u>Goal:</u> Make use of distributive law to common factor polynomials.

Summary: $6x + 4 = 2 \cdot 3x + 2 \cdot 2$ = 2(3x + 2)

Check by distributing: 2(3x+2) = 6x + 4

Recall that the Greatest Common Factor (GCF) of two or more numbers is the greatest value that divides evenly into those numbers. For example:

GCF(6,9) =

 $GCF(x^3, x^5) =$

Example 9: Factor 8*x* - 12 **Example 10:** Factor 28*xy* - 7*x*

Example 11: Factor $3x^2 - 15x + 21$

Example 12: Factor $5x^3 - 2x^2 + 3x$

Example 13: Factor $15x^4 + 25x^3 - 30x$

Example 14: Factor $16x^3y^2 + 24x^5y^2$

Example 15: Factor $2x^2 + 5x - 3$

<u>Recap</u>: GCF of $12x^4 + 14x^3 - 20x^2$ is _____

Example 1: Factor 3x(x - 5) + 2(x - 5)

Example 2: Factor $5x^2(2x + 7) + (2x + 7)$

Consider the cubic expression $x^3 + 2x^2 + 8x + 16$

Example 3: Factor $x^3 - 2x^2 + 6x + 9$

Example 4: Factor xy - 4y - 3x + 12

Example 5: Factor $2a^2 + 21b - 6ab - 7a$.

Summary: Factor Polynomials	
What to do	How to do it
Factor: common factors : Distribute: <i>left / right</i>	ax + ay = a(x + y) ax + bx = (a + b)x
Perfect square trinomial . <u>binomial squared</u>	$a^2x^2 \pm 2abx + b^2$ (ax ± b) ²
Difference of Squares: Conjugate Pairs:	$A^{2} - B^{2} = (A + B)(A - B)$ $a^{2}x^{2} - b^{2}y^{2} =$ (ax+by)(ax - by)

<u>Recap</u>: Expand and simplify (x + 2)(x + 5)

Recall that a quadratic expression has the form $ax^2 + bx + c$

If *a* = 1, then the expression will have the *simple* trinomial form.

Simple trinomials usually result from multiplying two binomials, each of the form x + k.

For example, $(x + 4)(x - 7) = x^2 - 3x - 28$.

Example 1: Factor $x^2 + 16x + 15$.

Example 2: Factor $x^2 + 11x + 24$.

Example 3: Factor $x^2 - 7x + 10$.

Example 4: Factor $x^2 + x - 12$.

Example 5: Factor *x*² - 7*x* - 18.

Example 6: Factor $x^2 + 5x + 2$.

When factoring complex trinomial, we must determine two values such with a sum of *b* and a product of *ac*. To make things work, we **decompose** the middle term into separate two terms.

Example 1: Factor 4*x*² - 8*x* - 21

Factor $4x^2 - 8x - 21$

Factoring Complex Trinomials

Example 2: Factor $6x^2 + 19x - 7$

Factor $6x^2 + 19x - 7$

Factoring Complex Trinomials

Example 3: Factor $25x^2 - 20x + 4$

Factor $25x^2 - 20x + 4$

Factoring Complex Trinomials

Example 4: Factor 4 - $20x + 25x^2$

Factor $4 - 20x + 25x^2$

<u>Recap</u>: Factor $1 + 10x + 25x^2$

Factor $1 + 10x + 25x^2$

Example 1: Fully factor $2x^2 - 4x - 30$

Example 2: Fully factor $20x^3 - 60x^2 + 45x$

Example 3: Factor $3x^4 - 15x^2 + 18$

Example 4: Factor $12x^2 - 27$

Example 5: Factor $16x^4 - 1$

Example 6*: Factor $x^3 - 8$

*You will not be tested on this