MPM2D: Principles of Mathematics

Quadratics in Standard Form

* <u>Goal:</u> Investigate graphs and properties of quadratic relations in standard form.

Linear Relations

A graph of a <u>linear</u> relation has the form: y = mx + b

Quadratic Relations

The graph of a <u>quadratic</u> relation has the form $y = ax^2 + bx + c$ is not a straight line since the value of x^2 increases much quicker than x.

<u>Example 1</u>: Sketch the graph of $y = x^2 - 2x + 3$

Construct a table of values to determine points.

x	$y = x^2 - 2x + 3$
0	$0^2 - 2(0) + 3 = 3$
1	$1^2 - 2(1) + 3 = 1$
2	$2^2 - 2(2) + 3 = 3$
3	$3^2 - 2(3) + 3 = 6$
4	$4^2 - 2(4) + 3 = 11$

Quadratic Relations

Key features:

Quadratic Relations: Standard Form

<u>Example 2</u>: Sketch the graph of $y = 2x^2 - 6$ and state its key features.

Quadratic Relations: Standard Form

<u>Example 3</u>: Sketch the graph of $y = -x^2 - 2x - 2$ and state its key features.

Quadratic Relations

Recall that the **first differences** of a linear relation are constant.

A quadratic relation has a <u>constant</u> second differences.

Let's compare these two relations:

$y = x^2 - 2x + 3$										
x	y									
		1D								
			2D							

2

Quadratic Relations

Example 4: Classify the relations below as linear, quadratic or neither.

x	y		
1	-7	1D	
2	2	9	2D
3	17	15	6
4	38	21	6
5	65	27	6

x	y		
1	-4	1D	
2	3	7	2D
3	22	19	12
4	59	37	18
5	120	61	24

Quadratic Relations: Standard Form

In summary, the standard form $y = ax^2 + bx + c$ of a quadratic relation give us the following key features:

...

...

- If a > 0, the parabola opens upward
- If a < 0, the parabola opens downward
- The *y*-intercept is at (0, *c*)

Quadratics in Vertex Form

* <u>Goal:</u> Investigate graphs and properties of quadratic relations in vertex form.

The quadratic relation can also be in **vertex form**: $y = a(x - h)^2 + k$. Let's determine the vertex of the following examples by using a table of values.

<u>1:</u> $y = x^2 + 3$			<u>2:</u> $y = (x - 2)^2$			<u>3:</u> $y = (x - 2)^2 + 3$			
x	$y = x^2 + 3$		x	$y = (x - 2)^2$		x	$y = (x - 2)^2 + 3$		
0	$(0)^2 + 3 = 0 + 3 = 3$		0	$(0 - 2)^2 = (-2)^2 = 4$		0	$(0-2)^2 + 3 = (-2)^2 + 3 = 4 + 3 = 7$		
1	$(1)^2 + 3 = 1 + 3 = 4$		1	$(1 - 2)^2 = (1)^2 = 1$		1	$(1-2)^2 + 3 = (-1)^2 + 3 = 1 + 3 = 4$		
2	$(2)^2 + 3 = 4 + 3 = 7$		2	$(2 - 2)^2 = (0)^2 = 0$		2	$(2-2)^2 + 3 = (0)^2 + 3 = 0 + 3 = 3$		
3	$(3)^2 + 3 = 9 + 3 = 12$		3	$(3 - 2)^2 = (1)^2 = 1$		3	$(3-2)^2 + 3 = (1)^2 + 3 = 1 + 3 = 4$		
4	$(4)^2 + 3 = 16 + 3 = 19$		4	$(4 - 2)^2 = (2)^2 = 4$		4	$(4-2)^2 + 3 = (2)^2 + 3 = 4 + 3 = 7$		

<u>Observation:</u> Pretty long and tedious... but did you notice anything?

Looking at the previous 3 examples, we observe the following:

- The vertex of $y = x^2 + 3$ is at (0,3) ----(0, k)
- The vertex of $y = (x 2)^2$ is at (2,0) - - (h, 0)
- The vertex of $y = (x 2)^2 + 3$ is at (2,3) - - (h, k)

Therefore, the quadratic relation of the form $y = a(x - h)^2 + k$ will have its vertex at (h, k).

But wait, there's more...

<u>1:</u> $y = x^2 + 3$			<u>2</u>	<u>2:</u> y	/ = ((x -	2) ²	<u>3:</u> $y = (x - 2)^2 + 3$				3			
	x	y				x	y				x	y			
	0	3	1D			0	3	1D			0	3	1D		
	1	4		2D		1	4		2D		1	4		2D	
	2	7				2	7				2	7			
	3	12				3	12				3	12			
	4	19				4	19				4	19			

<u>Question:</u> What did you notice about the **first difference (1D)**?

What does the graph look like for $y = (x - 2)^2 + 3$?

<u>Step</u> pattern:

Example 1: Graph the parabola given by $y = 2(x + 1)^2 + 5$

Example 2: Graph the parabola given by $y = -3(x - 1)^2 + 2$

<u>Example 3</u>: Determine a quadratic relation with its vertex at V(-3,12) if it passes through the point P(-1,4).

In summary, the vertex form $y = a(x - h)^2 + k$ of a quadratic relation give us the following key features:

...

- If a > 0, the parabola opens upward
- If a < 0, the parabola opens downward \bigotimes
- The *vertex* is at (*h*, *k*)
- The "**step** pattern" is given by *a*, 3*a*, 5*a*, …

Completing the Square Part 1: Simple Trinomials

 Goal: Using algebra to convert simple quadratic functions from standard form to vertex form.

<u>Recap</u>: Sketch the graph of $y = (x + 1)^2 - 4$

The purpose of completing the square (CTS) is to convert from standard form to vertex form so we can graph the function easier.

To do so, we need to rewrite a trinomial using a ______

Consider: $(x - 3)^2 + 2 = (x - 3)(x - 3) + 2 = x^2 - 6x + 9 + 2 = x^2 - 6x + 11$

standardvertexBut how do we go from $x^2 - 6x + 11$ to $(x - 3)^2 + 2$?

Generally, we need to add and subtract a constant term of _____.

<u>Example 1</u>: Convert $y = x^2 + 6x + 5$ to vertex form.

<u>Example 2</u>: Determine the minimum value of $y = x^2 + 12x + 16$.

Example 3: Sketch the graph of $y = x^2 - 8x + 18$.

<u>Example 3</u>: Sketch the graph of $y = x^2 - 8x + 18$.

Completing the Square Part 2: Complex Trinomials

Goal: Using algebra to convert complex quadratic functions from standard form to vertex form.

$$x^{2} + bx + c = 0$$

$$x^{2} + bx = -c$$

$$x^{2} + bx + \left(\frac{b}{2}\right)^{2} = -c + \left(\frac{b}{2}\right)^{2}$$

$$\left(x + \frac{b}{2}\right)^{2} = -c + \left(\frac{b}{2}\right)^{2}$$

Previously, we were able to convert to vertex form when a = 1.

For complex trinomials, we need to ensure that the *a* value is factored out for the first two terms.

e.g.
$$3x^2 - 9x + 25 =$$

 $-2x^2 - 8x + 24 =$
 $5x^2 - 9x + 7 =$
 $-0.5x^2 - 4x + 2 =$

<u>Example 1</u>: Convert $y = 2x^2 - 20x + 53$ to vertex form

Example 2: What is the maximum value of $y = -3x^2 - 18x + 5$?

<u>Example 3</u>: Sketch a graph of $y = 2x^2 - 8x$?

<u>Example 3</u>: Sketch a graph of $y = 2x^2 - 8x$?

Quadratics in Factored Form

* <u>Goal</u>: Determine *x*-intercepts for quadratic in factored form.

Distributive Law

<u>Recall</u>: Expand and simplify the expression

3(x+4)(x-5) =

<u>Note:</u> This could have also been solved by multiplying the two binomials first, then multiplying the terms of resulting trinomial by 3.

Quadratic Relations

Consider the quadratic relation y = 2(x - 1)(x - 5).

Expanding the equation using distributive law gives the equivalent equation $y = 2x^2 - 12x + 10$. Using a table of values for either expression yields the same results.

Quadratic Relations

A quadratic relation written as the product of two binomials is said to be in **factored form.**

Note: In its table of values, y = 2(x - 1)(x - 5) has *x*-intercepts or zeros at (1, 0) and (5, 0). That is the **signs** of the factors appear to be *opposite*.

Also note that the *y*-intercept is at (0,10), and that 2(1)(5) = 10

Factored Form of a Quadratic

A quadratic relation in factored form, y = a(x - r)(x - s), has *x*-intercepts of *r* and *s*. It opens upward if a > 0, and downward if a < 0. Its *y*-intercept is (a)(r)(s).
<u>Example 1</u>: State the intercepts for the relation y = 2(x - 3)(x - 5)

<u>Example 2</u>: State the intercepts for the relation y = -3x(x + 7)

Recall that a parabola's vertex lies on its axis of symmetry (AoS).

The axis is **midway** between any two points that have the same *y*-coordinate, such as the *x*-intercepts.

The *x*-coordinate of the vertex, then, is the average of the *x*-coordinates of the *x*-intercepts.

Factored Form of a Quadratic

The *x*-coordinate of the vertex, (h,k) of a parabola described by the relation y = a(x - r)(x - s), is at h = (r + s)/2. The *y*-coordinate is at k = a(h - r)(h - s).

<u>Example 3</u>: Determine the coordinates of the vertex of the parabola described by y = 3(x + 2)(x - 4).

<u>Example 4</u>: Graph the quadratic relation y = -(x - 3)(x + 5)

<u>Example 4</u>: Graph the quadratic relation y = -(x - 3)(x + 5)

Example 5: Determine an equation for a quadratic relation with *x*-intercepts at (7,0) and (-1,0), if it passes through (2,30).

Quadratic Relations Converting Quadratic Relations to Factored Form

* <u>Goal:</u> Convert quadratic relations from standard form to factored form.

<u>Recall</u>: Graph the relation y = 2(x + 7)(x - 1)

A quadratic relation may be converted to factored form using any of the the factoring techniques earlier.

Example 1: Determine the coordinates of the vertex of the relation $y = x^2 - 8x - 9$

Example 2: Determine the maximum value of $y = -x^2 - 8x + 33$

Example 3: Graph the relation $y = 2x^2 - 4x - 30$.

Example 4: Graph the relation $y = x^2 - 4x + 5$

Quadratic Relations Partial Factoring

* <u>Goal:</u> Use partial factoring method to determine vertex of a relation.

<u>Recall</u>: Determine the location of the vertex for y = 3(x + 7)(x - 1) by factoring.

Consider the graphs of $y = x^2 - 4x + 5$ and $y = x^2 - 4x$ below.

Observations:

Example 1: Determine the location of the vertex for $y = x^2 - 6x + 10$

Graph of $y = x^2 - 6x + 10$:

Note:

Example 2: Determine the location of the vertex for $y = 2x^2 + 16x + 27$

Graph of $y = 2x^2 + 16x + 27$:

Example 3: Sketch the graph of $y = -2x^2 + 20x - 37$

Example 3: Sketch the graph of $y = -2x^2 + 20x - 37$

Quadratic Relations Applications of Quadratic Relations

 Goal: Use previously learned methods to solve for maximum or minimum value in Applications related problems.

Many applications of quadratic relations involve finding the **optimal value** (i.e. minimum or maximum value).

For example, the maximum height of a toy rocket can be calculated by modelling its flight path with a quadratic relation and determining the location of the **vertex**.

These problems are often referred to as "**max/min**" problems. Most of the time, "greatest", "least", "largest", "smallest", "optimal", etc. are terms that are often used to indicate the maximum or minimum value in the problem.

<u>Recall</u>: To determine the location of the vertex, we can either:

or use _____

Example 1:

A firework, launched into the air with a velocity of 58.8 m/s from a height of 2 m, explodes at its highest point. Its height, *h* metres, is given by $h = -4.9t^2 + 58.8t + 2$, where *t* is the time in seconds. When does the firework explode? How high is it?

Example 1:

Example 2:

Determine the values of two numbers, one 10 greater than another, if the sum of their squares is a minimum. What is the minimum?

Example 2:

Example 3:

A T-shirt manufacturers typically sells 500 shirts per week to distributors for \$4.00 each. For each \$0.50 reduction in price, she estimates she can sell an additional 20 shirts. How much should she charge per shirt to maximize her revenue?

Example 3:

Quadratic Equations and Applications

 Goal: Use a variety of methods to solve for equations and Applications related problems.

Warm up:

If *a* multiply *b* is equal to 0, what can we say about *a* and *b*?

What can we said about ab = k, if k is not equal to 0? For example, ab = 9.

What about quadratic equations like (x - 2)(x - 5) = 0?

Observation: If a quadratic relation can be expressed in factored form, such that the product of the two binomials is _____, then we can solve for the values of ____.

Example 1: Solve* $x^2 - 4x - 12 = 0$

*Remember to always check with DESMOS.

Example 2: Solve* $2x^2 + 5x - 12 = 0$

Example 3: Solve* $3x^2 - 33x + 84 = 0$

Example 4: Solve* $4x^2 - 9 = 0$ in two ways.

Example 5: Solve* $x^2 - 10x = -25$
Solving Quadratic Equations Part 1: Solving by Factoring

Example 6: Solve* $2x^2 + 5x - 9 = 6 - 2x$

Solving Quadratic Equations Part 1: Solving by Factoring

Example 7: Solve* $4x^2 + 19x - 2 = 3x^2 + 5x + 7$

Solving Quadratic Equations Part 1: Solving by Factoring

<u>SUMMARY</u> of factoring techniques in this lesson:

- 1. <u>Product (ac) & Sum (b)</u>:
- For simple trinomials, i.e. $x^2 + \mathbf{b}x + \mathbf{c}$
- Find two integers whose **product** is **c** and **sum** is **b**.
- For complex trinomials, i.e. $ax^2 + bx + c$
- -Find two integers whose **product** is **ac** and **sum** is **b**.
- 2. <u>Difference of Squares</u>:

 $x^2 - y^2 = (x + y)(x - y)$, e.g. $4x^2 - 49 = (2x + 7)(2x - 7)$

Solving Equations Practice

- \Box 1. When Is a Wrestler "King of the Ring"?
- \Box 2. What Happened When the Boarding House Blew Up?
- 3. What did Mrs. Zling say when Mr. Zling said he was going mountain climbing in the himalayas?
- □ 4. How Can Fishermen Save Gas?
- □ 5. What Po You Call a Sore on Police Officer's Foot?
- □ 6. Old Lawyers Never Die, They Just _____ Old Skiers Never Die, They Just _____

Example 1: Solve* $(x - 8)^2 = 7$

*Note: These questions involve "roots", more specifically square roots. Your answer must be in **root format**, i.e. $\sqrt{#}$. **No decimals**!

Example 2: Solve* $x^2 + 8x + 8 = 0$

* Your answer must be in **root format**, i.e. $\sqrt{#}$. **No decimals**!

Example 3: Solve* $-2x^2 + 4x + 9 = 0$

*No decimals! $\sqrt{\#}$ format always.

Example 4: Solve* $3x^2 - 12x + 16 = 0$

*No decimals! $\sqrt{\#}$ format always.

Consider the general (standard) form of a quadratic relation, $y = ax^2 + bx + c$. We can complete the square to determine values of x for which $ax^2 + bx + c = 0$.

The Quadratic Formula:
$$x = -\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Example 1: Verify that $2x^2 - 12x + 12 = 0$, has solutions $x = 3 \pm \sqrt{3}$ using the quadratic formula.

Example 2: Solve $x^2 - 6x - 91 = 0$ using the quadratic formula.

Example 3: Determine the *x*-intercepts of the parabola defined by $y = -3x^2 - 6x + 15$.

Example 4: Solve $2x^2 - x + 5 = 0$.

Let $D = b^2 - 4ac$, the expression inside the radical ($\sqrt{}$) sign in the quadratic formula. The expression is known as the *discriminant*, and it can be used to give us information about both the number of **real**-valued **solutions** for a quadratic equation.

The number of **real solutions (roots)** to a quadratic equation can be determined using the discriminant, $D = b^2 - 4ac$.

- If *D* < 0, there are **no** real solutions.
- If *D* = 0, there is **one** real solution.
- If *D* > 0, there are **two distinct** real solutions.

Example 5: Determine the number of real solutions to $4x^2 - 20x + 25 = 0$.

Example 6: Determine the number of real solutions to $3x^2 + 5x + 4 = 0$.