MAP4C1 Unit 2: Geometry

2.5 Investigating Optimization

Learning Goals: I am learning to...

☐ Investigate the properties of optimization specific to optimizing area and perimeter.

Part A: Optimizing Area (Maximizing Area)

You are looking to build a rectangular enclosed pen for your pet. You have been given a set amount of fencing to create an enclosure to optimize the area. Why would you want to

- To work on a budget and use as least material possible

Scenario 1: You have 12 m of fencing: Draw three rectangular enclosures that you could build with 12 m of fence. Determine which has the largest area.

Enclosure 1	Enclosure 2	Enclosure 3
Perimeter = 12 m	Perimeter = 12 m	Perimeter = 12 m
Dimensions = $3 \times 3 \text{M}$	Dimensions = $4 \times 2 \text{ m}$	Dimensions = $1 \times 5 m$
Area = 9 M^2	Area = 3 m²	Area = 5m ²
3m 3m	4m 2m	5m

Given a perimeter of 12 m, the enclosure with dimensions $3m \times 3m$ gives an optimal area of $_{\rm m}^{\rm q}$ m².

Scenario 2: You have 16 m of fencing: Draw four rectangular enclosures that you could build with 16 m of fence. Determine which has the largest area.

Enclosure 1	Enclosure 2	Enclosure 3	Enclosure 4	
Perimeter = 16 m	Perimeter = 16 m	Perimeter = 16 m	Perimeter = 16 m	
	Dimensions = $6 \times 2 \text{ M}$	Dimensions = $1 \times 7 \text{ m}$	Dimensions = 5x3m	
Area = 16 M^2	Area = $12 m^2$	Area = $7m^2$	Area = 15m ²	
4m	[2m	7m	15m	

Given a perimeter of 16 m, the enclosure with dimensions $\frac{4m}{x} \times \frac{4m}{y}$ gives an optimal area of 6 m².

MAP4C1 Unit 2: Geometry

Scenario 3: You have 20 m of fencing

Draw five rectangular enclosures that you could build with 20 m of fence. Determine which

has the largest area.

Enclosure 1	Enclosure 2	Enclosure 3	Enclosure 4	Enclosure 5
Perimeter = 20m	Perimeter = 20m	Perimeter = 20m	Perimeter = 20m	Perimeter = 20m
Dimensions = 5×5	Dimensions = 4 x 6	Dimensions = 3×7	Dimensions =2(g)	Dimensions = /(q)
Area = $25m^2$	Area = 24m²	Area = $2 lm^2$	Area = 6 m ²	Area = 9m²
	Cha			
5m	4m	3m	2 M	gm []
5m	•	71	gm	

Given a perimeter of 20 m, the enclosure with dimensions $\frac{5m}{x}$ gives an optimal area of 25 m².

Part B: Optimizing Perimeter (Minimizing Perimeter)

You are still making an enclosure for your pet, but this time you have a limited area, which must be 36m². You need to design the enclosure in order to optimize the perimeter of the enclosure.

- Why would you want to optimize the perimeter of the enclosure?

 Still want a large enough area

 Reduce the amount of material needed

Scenario: You have 36 m² to fence: Draw five rectangular enclosures that you could build for a 36 m² enclosure. Determine which has the largest perimeter.

Enclosure 1	Enclosure 2	Enclosure 3	Enclosure 4	Enclosure 5	
Perimeter = 2µм	Perimeter = 26M	Perimeter = 30m	Perimeter = 40m	Perimeter = 74™	
Dimensions = 6(6	Dimensions $=4(9)$	Dimensions = $\frac{1}{2}$	Dimensions = (802)	Dimensions = 36(1)
Area = 36 m ²	Area = 36 m ²	Area = 36 m ²	Area = 36 m ²	Area = 36 m ²	
 1			18W	36m	
6m	4m	3M	2nh		n
6m	9M	RM			

Given an area of 36 m², the enclosure with dimensions $6m \times 6m \times 6m$ gives an optimal perimeter of 24 m.

MAP4C1 Unit 2: Geometry

Conclusions

- 1. What can you conclude about optimizing area given a set perimeter?
- •
- .
- •
- 2. What can you conclude about optimizing perimeter given a set area?
- •
- •
- •

Example: Without drawing the rectangular enclosures, use what you have learned above to determine the optimal area/perimeter for the following situations.

1. Optimize the area, given the following perimeters.

a)
$$P = 100 \text{ cm}$$

2. Optimize the perimeter, given the following areas.

a)
$$A = 49 \text{ m}^2$$

b)
$$A = 112 \text{ m}^2$$

c)
$$A = 570 \text{ m}^2$$