1.2 Applications of Right Triangles

Learning Goals: I am learning to...

- ☐ Apply right angle trigonometry to solve real-world application problems
- Set up diagrams and solve problems involving the angles of elevation and depression

Angles of Elevation and Depression

Angle of Elevation	Angle of Depression
The Angle of Elevation is the angle	The Angle of Depression is the angle
measured from the horizontal looking <u>UP</u> .	measured from the horizontal looking
	down.
angle of elevation horizontal	horizontal angle of depression
Angle of elevation = Angle of Depression	
Recall: Alternating angles (the z pattern)	

Do not forget the following when solving an application problem:

- Always draw a <u>well-labeled diagram</u>, especially if one has not bee included in the initial problem
- If you are introducing a new variable (unknown) define this using a let statement
- Label everything you know as well as everything you want to determine
- Remember to include units and a therefore statement at the end of your solution

Example 1: A plane is coming into land at Pearson airport. The <u>angle of depression is 22</u>° and the plane is 350m from the ground. Determine the distance from the plane to the airport.

: The distance from the plane to the airport is 934.3m

MAP4C1 Unit 1: Trigonometry

Example 2: A weather balloon is tethered to a rope that is 600m long.

- a) What is the angle of elevation of the balloon, when it is 400m high?
- b) What do you have to assume about the rope in order to answer this question?

Here rep. the angle of elevation
a) SOH CAH TOA Sin
$$0 = \frac{400}{600}$$

Sin $0 = \frac{6PP}{hyP}$ $0 = \sin^{-1}$

$$\sin \phi = \frac{400}{600}$$

$$\phi = \sin^{-1} \left(\frac{400}{600} \right)$$

$$\phi = 41.8^{\circ}$$

.. The angle of elevation is 41.80

Example 3: An observer in a 55m tall lighthouse spots a ship in distress 68 m from shore. What is the angle of depression from the lighthouse to the ship?

let
$$\theta$$
 rep. the angle of depression
 SOH CAH TOA) tan $\theta = \frac{55}{68}$
tan $\theta = \frac{OPP}{adj}$ $\theta = 39.0^{\circ}$

$$\tan \theta = \frac{55}{68}$$

$$\theta = \tan^{-1}\left(\frac{55}{68}\right)$$

$$\theta = 39.0^{\circ}$$

.. The angle of depression is 39.0°

Example 4: A wheelchair ramp must have an angle of elevation of no more than 12°. A wooden ramp is available that is 8.0m long and 1.5 m high. Will this ramp meet the requirements?

adı

* We are checking the AOE to see if It is more or less than 120

let o rep. the angle of elevation

Sine =
$$\frac{6PP}{hyp}$$

$$Sin \Theta = \frac{1.5}{8.0}$$

$$\Theta = Sin^{-1} \left(\frac{1.5}{8.0} \right)$$

. The GOE is 10.8°, Which meets the design requirements

MAP4C1 Unit 1: Trigonometry

Example 5: A carpenter leans a ladder against a wall at an angle of 68°. The distance from the foot of the ladder to the wall is 36 inches.

- How long is the ladder in inches?
- How high up the wall does the ladder reach in inches?

a) let x rep. the length of the ladder
$$\frac{\text{Sin }68^{\circ}}{\text{Sin }68^{\circ}} = \frac{36}{\times}$$

 $\sin \theta = \frac{opp}{hyp}$ $\times \frac{(\sin 68^{\circ})}{\sin 68^{\circ}} = \frac{36}{\sin 68^{\circ}}$

$$in \Theta = \frac{OPP}{hyp}$$
 $\times \frac{(sin68^\circ)}{sin68^\circ} = \frac{36}{sin68^\circ}$
 $\times = 38.8^\circ$

... The ladder is 38% inches long

b) let y rep. the height of the ladder up the Wall.

SQH CBH TOB

$$\frac{\tan 68^{\circ} = 36}{y}$$

$$\tan \theta = \frac{opp}{adj}$$

$$\frac{y(\tan 68^{\circ})}{\tan 68^{\circ}} = \frac{36}{\tan 68^{\circ}}$$

$$y = (4.5 in)$$

: The ladder is 14.5 in. up.the Wall.

* you could also some part (b) with the Pythagorean Theorem.