## 1.1 Trigonometry in Right Triangles

Learning Goals: I am learning to...

 Identify and label the opposite, adjacent and hypotenuse sides in a right triangle



- ☐ Use the primary trigonometric ratios to determine an unknown side and/or angle in a right triangle
- ☐ Identify which ratio to used based on the given information

The **primary trigonometric ratios** are used to solve for any missing side or angle in a <u>right</u> triangle.

| SOH                            | САН                            | TOA                            |
|--------------------------------|--------------------------------|--------------------------------|
| $\sin\theta = \frac{opp}{hyp}$ | $\cos\theta = \frac{adj}{hyp}$ | $\tan\theta = \frac{opp}{adj}$ |



- 1. Always label the sides relative to the angle of interest (i.e opp, adj, hyp)
- 2. Decide which ratio (sin/cos/tan) you need to use based on what you have been given/need to find (use a process of elimination)
- 3. Set up the ratio with your known sides/angles
- 4. Solve for the unknown side or angle

**Example 1:** Determine the ratios of sin A, cos A, and tan A.

$$Sin A = \frac{OPP}{hyP}$$
  $cos A = \frac{adj}{hyP}$   $tan A = \frac{OPP}{codj}$   
 $Sin A = \frac{4}{5}$   $cos A = \frac{3}{5}$   $tan A = \frac{4}{3}$ 



**Example 2:** Solve for  $\angle X$  in each.





Example 4: A 9.5 m ladder leans against a vertical wall. If the foot of the ladder is 2 m from the base of the wall, what angle does the ladder make with the ground?



Example 5: A 200 m cable attached to the top of an antenna makes an angle of 37° with



